Skip to main content

Second-Generation Peroxides: The OZs and Artemisone

  • Chapter
  • First Online:
Treatment and Prevention of Malaria

Part of the book series: Milestones in Drug Therapy ((MDT))

  • 2285 Accesses

Abstract

The emergence of multi-drug resistant strains of Plasmodium falciparum has rendered many affordable antimalarials, such as chloroquine, much less effective in addressing the severe health issues in sub-Saharan Africa, Southeast Asia and the Amazon region. In order to overcome the neurotoxicity of an initial series of artemisinin-derived drugs and their relatively high production costs, an intensive and all-inclusive research programme to develop new derivatives has been undertaken. Two efficient antimalarial drug candidates of different chemotype have been devised, the artemisinin derivative artemisone and 1,2,4-troxolane OZ277. Both are nontoxic, more potent than artemisinin and should be affordable to people of endemic regions. The same may hold for the backup candidates artemiside and OZ439.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    However, dihydroartemisinin was detected in plasma during assessment of the safety of artemisone [27]. The concentrations were low, with geometric mean C max values of 10 ng/ml after an 80 mg dose.

  2. 2.

    The annual demand for artemisinin as a starting material for transformation into semi-synthetic products amounts to ca. 114 tonnes for Coartem® production only. Since synthesis of artemisinin is uneconomical currently, Novartis initiated an increase of the agricultural cultivation of Artemisia annua in Kenya, Tanzania and Uganda and extraction of artemisinin therefrom, in addition to Chinese supplies of artemisinin.

References

  1. Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, Lwin KM, Ariey F, Hanpithakpong W, Lee SJ et al (2009) Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 361:455–467

    Article  PubMed  CAS  Google Scholar 

  2. Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, Fukuda MM (2008) Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med 359:2619–2620

    Article  PubMed  CAS  Google Scholar 

  3. Jefford CW (2007) New developments in synthetic peroxidic drugs as artemisinin mimics. Drug Discov Today 12:487–495

    Article  PubMed  CAS  Google Scholar 

  4. Lin AJ, Miller RE (1995) Antimalarial activity of new dihydroartemisinin derivatives. 6. alpha-Alkylbenzylic ethers. J Med Chem 38:764–770

    Article  PubMed  CAS  Google Scholar 

  5. Lin AJ, Lee M, Klayman DL (1989) Antimalarial activity of new water-soluble dihydroartemisinin derivatives. 2. Stereospecificity of the ether side chain. J Med Chem 32:1249–1252

    Article  PubMed  CAS  Google Scholar 

  6. Fishwick J, McLean WG, Edwards G, Ward SA (1995) The toxicity of artemisinin and related compounds on neuronal and glial cells in culture. Chem Biol Interact 96:263–271

    Article  PubMed  CAS  Google Scholar 

  7. Wesche DL, DeCoster MA, Tortella FC, Brewer TG (1994) Neurotoxicity of artemisinin analogs in vitro. Antimicrob Agents Chemother 38:1813–1819

    Article  PubMed  CAS  Google Scholar 

  8. Nontprasert A, Pukrittayakamee S, Prakongpan S, Supanaranond W, Looareesuwan S, White NJ (2002) Assessment of the neurotoxicity of oral dihydroartemisinin in mice. Trans R Soc Trop Med Hyg 96:99–101

    Article  PubMed  CAS  Google Scholar 

  9. Davis TM, Binh TQ, Ilett KF, Batty KT, Phuong HL, Chiswell GM, Phuong VD, Agus C (2003) Penetration of dihydroartemisinin into cerebrospinal fluid after administration of intravenous artesunate in severe falciparum malaria. Antimicrob Agents Chemother 47:368–370

    Article  PubMed  CAS  Google Scholar 

  10. Li Q, Weina PJ (2010) Severe embryotoxicity of artemisinin derivatives in experimental animals, but possibly safe in pregnant women. Molecules 15:40–57

    Article  CAS  Google Scholar 

  11. Avery MA, Alvim-Gaston M, Vroman JA, Wu B, Ager A, Peters W, Robinson BL, Charman W (2002) Structure-activity relationships of the antimalarial agent artemisinin. 7. Direct modification of (+)-artemisinin and in vivo antimalarial screening of new, potential preclinical antimalarial candidates. J Med Chem 45:4321–4335

    Article  PubMed  CAS  Google Scholar 

  12. Chadwick J, Mercer AE, Park BK, Cosstick R, O’Neill PM (2009) Synthesis and biological evaluation of extraordinarily potent C-10 carba artemisinin dimers against P. falciparum malaria parasites and HL-60 cancer cells. Bioorg Med Chem 17:1325–1338

    Article  PubMed  CAS  Google Scholar 

  13. Pacorel B, Leung SC, Stachulski AV, Davies J, Vivas L, Lander H, Ward SA, Kaiser M, Brun R, O’Neill PM (2010) Modular synthesis and in vitro and in vivo antimalarial assessment of C-10 pyrrole mannich base derivatives of artemisinin. J Med Chem 53:633–640

    Article  PubMed  CAS  Google Scholar 

  14. Posner GH, Parker MH, Northrop J, Elias JS, Ploypradith P, Xie S, Shapiro TA (1999) Orally active, hydrolytically stable, semisynthetic, antimalarial trioxanes in the artemisinin family. J Med Chem 42:300–304

    Article  PubMed  CAS  Google Scholar 

  15. Posner GH, Ploypradith P, Parker MH, O’Dowd H, Woo SH, Northrop J, Krasavin M, Dolan P, Kensler TW, Xie S et al (1999) Antimalarial, antiproliferative, and antitumor activities of artemisinin-derived, chemically robust, trioxane dimers. J Med Chem 42:4275–4280

    Article  PubMed  CAS  Google Scholar 

  16. Jefford CW (2001) Why artemisinin and certain synthetic peroxides are potent antimalarials. Implications for the mode of action. Curr Med Chem 8:1803–1826

    Article  PubMed  CAS  Google Scholar 

  17. McCullough KJ, Nojima M (2001) Recent advances in the chemistry of cyclic peroxides. Curr Org Chem 5:601–636

    Article  CAS  Google Scholar 

  18. O’Neill PM, Amewu RK, Nixon GL, Bousejra ElGarah F, Mungthin M, Chadwick J, Shone AE, Vivas L, Lander H, Barton V et al (2010) Identification of a 1,2,4,5-tetraoxane antimalarial drug-development candidate (RKA 182) with superior properties to the semisynthetic artemisinins. Angew Chem Int Ed Engl 49:5693–5697

    Article  PubMed  Google Scholar 

  19. Opsenica I, Opsenica D, Smith KS, Milhous WK, Šolaja BA (2008) Chemical stability of the peroxide bond enables diversified synthesis of potent tetraoxane antimalarials. J Med Chem 51:2261–2266

    Article  PubMed  CAS  Google Scholar 

  20. Šolaja B, Opsenica DM, Pocsfalvi G, Milhous WK, Kyle DE (2005) Mixed steroidal 1,2,4,5-tetraoxane compounds and methods of making and using thereof. US Patent 6906098 B2

    Google Scholar 

  21. Haynes RK, Fugmann B, Stetter J, Rieckmann K, Heilmann HD, Chan HW, Cheung MK, Lam WL, Wong HN, Croft SL et al (2006) Artemisone–a highly active antimalarial drug of the artemisinin class. Angew Chem Int Ed Engl 45:2082–2088

    Article  PubMed  CAS  Google Scholar 

  22. Haynes RK, Ho WY, Chan HW, Fugmann B, Stetter J, Croft SL, Vivas L, Peters W, Robinson BL (2004) Highly antimalaria-active artemisinin derivatives: biological activity does not correlate with chemical reactivity. Angew Chem Int Ed Engl 43:1381–1385

    Article  PubMed  CAS  Google Scholar 

  23. Bhattacharjee AK, Karle JM (1999) Stereoelectronic properties of antimalarial artemisinin analogues in relation to neurotoxicity. Chem Res Toxicol 12:422–428

    Article  PubMed  CAS  Google Scholar 

  24. http://www.public-health.tu-dresden.de/dotnetnuke3/Portals/0/VKliPhaDresden%202005.pdf. Accessed 04 Jan 2011

  25. Vivas L, Rattray L, Stewart LB, Robinson BL, Fugmann B, Haynes RK, Peters W, Croft SL (2007) Antimalarial efficacy and drug interactions of the novel semi-synthetic endoperoxide artemisone in vitro and in vivo. J Antimicrob Chemother 59:658–665

    Article  PubMed  CAS  Google Scholar 

  26. Jambou R, Legrand E, Niang M, Khim N, Lim P, Volney B, Ekala MT, Bouchier C, Esterre P, Fandeur T et al (2005) Resistance of Plasmodium falciparum field isolates to in-vitro artemether and point mutations of the SERCA-type PfATPase6. Lancet 366:1960–1963

    Article  PubMed  CAS  Google Scholar 

  27. Ashton M, Hai TN, Sy ND, Huong DX, Van Huong N, Nieu NT, Cong LD (1998) Artemisinin pharmacokinetics is time-dependent during repeated oral administration in healthy male adults. Drug Metab Dispos 26:25–27

    PubMed  CAS  Google Scholar 

  28. Svensson US, Ashton M (1999) Identification of the human cytochrome P450 enzymes involved in the in vitro metabolism of artemisinin. Br J Clin Pharmacol 48:528–535

    Article  PubMed  CAS  Google Scholar 

  29. Nagelschmitz J, Voith B, Wensing G, Roemer A, Fugmann B, Haynes RK, Kotecka BM, Rieckmann KH, Edstein MD (2008) First assessment in humans of the safety, tolerability, pharmacokinetics, and ex vivo pharmacodynamic antimalarial activity of the new artemisinin derivative artemisone. Antimicrob Agents Chemother 52:3085–3091

    Article  PubMed  CAS  Google Scholar 

  30. Brewer TG, Grate SJ, Peggins JO, Weina PJ, Petras JM, Levine BS, Heiffer MH, Schuster BG (1994) Fatal neurotoxicity of arteether and artemether. Am J Trop Med Hyg 51:251–259

    PubMed  CAS  Google Scholar 

  31. Obaldia N 3rd, Kotecka BM, Edstein MD, Haynes RK, Fugmann B, Kyle DE, Rieckmann KH (2009) Evaluation of artemisone combinations in Aotus monkeys infected with Plasmodium falciparum. Antimicrob Agents Chemother 53:3592–3594

    Article  PubMed  CAS  Google Scholar 

  32. Waknine-Grinberg JH, Hunt N, Bentura-Marciano A, McQuillan JA, Chan HW, Chan WC, Barenholz Y, Haynes RK, Golenser J (2010) Artemisone effective against murine cerebral malaria. Malar J 9:227

    Article  PubMed  Google Scholar 

  33. Haynes RK, Chan WC, Lung CM, Uhlemann AC, Eckstein U, Taramelli D, Parapini S, Monti D, Krishna S (2007) The Fe2+-mediated decomposition, PfATP6 binding, and antimalarial activities of artemisone and other artemisinins: the unlikelihood of C-centered radicals as bioactive intermediates. ChemMedChem 2:1480–1497

    Article  PubMed  CAS  Google Scholar 

  34. Bousejra-El Garah F, Meunier B, Robert A (2008) The antimalarial artemisone is an efficient heme alkylating agent. Eur J Inorg Chem 2008:2133–2135

    Article  Google Scholar 

  35. Laurent SA, Loup C, Mourgues S, Robert A, Meunier B (2005) Heme alkylation by artesunic acid and trioxaquine DU1301, two antimalarial trioxanes. ChemBioChem 6:653–658

    Article  PubMed  CAS  Google Scholar 

  36. Robert A, Cazelles J, Meunier B (2001) Characterization of the alkylation product of heme by the antimalarial drug artemisinin. Angew Chem Int Ed Engl 40:1954–1957

    Article  PubMed  CAS  Google Scholar 

  37. Robert A, Coppel Y, Meunier B (2002) Alkylation of heme by the antimalarial drug artemisinin. Chem Commun 2002:414–415

    Article  Google Scholar 

  38. Robert A, Benoit-Vical F, Claparols C, Meunier B (2005) The antimalarial drug artemisinin alkylates heme in infected mice. Proc Natl Acad Sci USA 102:13676–13680

    Article  PubMed  CAS  Google Scholar 

  39. Coghi P, Basilico N, Taramelli D, Chan WC, Haynes RK, Monti D (2009) Interaction of artemisinins with oxyhemoglobin Hb-FeII, Hb-FeII, carboxyHb-FeII, heme-FeII, and carboxyheme FeII: significance for mode of action and implications for therapy of cerebral malaria. ChemMedChem 4:2045–2053

    Article  PubMed  CAS  Google Scholar 

  40. Haynes RK (2005) Reply to comments on “Highly antimalaria-active artemisinin derivatives: biological activity does not correlate with chemical reactivity”. Angew Chem Int Ed Engl 44:2064–2065

    Article  CAS  Google Scholar 

  41. Avery MA, Chong WKM, Bupp JE (1990) Tricyclic analogues of artemisinin: synthesis and antimalarial activity of (+)-4,5=secoartemisinin and (−)-5-nor-4,5-secoartemisinin. J Chem Soc Chem Commun 1487–1489

    Google Scholar 

  42. Avery MA, Gao F, Chong WKM, Hendrickson TF, Inman WD, Crews P (1994) Synthesis, conformational analysis, and antimalarial activity of tricyclic analogs of artemisinin. Tetrahedron 50:952–957

    Article  Google Scholar 

  43. Haynes RK, Vonwiller SC (1996) The behaviour of qinghaosu (artemisinin) in the presence of non-heme iron(II) and (III). Tetrahedron Lett 37:257–260

    Article  CAS  Google Scholar 

  44. Eckstein-Ludwig U, Webb RJ, Van Goethem ID, East JM, Lee AG, Kimura M, O’Neill PM, Bray PG, Ward SA, Krishna S (2003) Artemisinins target the SERCA of Plasmodium falciparum. Nature 424:957–961

    Article  PubMed  CAS  Google Scholar 

  45. Parapini S, Basilico N, Mondani M, Olliaro P, Taramelli D, Monti D (2004) Evidence that haem iron in the malaria parasite is not needed for the antimalarial effects of artemisinin. FEBS Lett 575:91–94

    Article  PubMed  CAS  Google Scholar 

  46. Uhlemann AC, Cameron A, Eckstein-Ludwig U, Fischbarg J, Iserovich P, Zuniga FA, East M, Lee A, Brady L, Haynes RK et al (2005) A single amino acid residue can determine the sensitivity of SERCAs to artemisinins. Nat Struct Mol Biol 12:628–629

    Article  PubMed  CAS  Google Scholar 

  47. Pooley S, Fatih FA, Krishna S, Gerisch M, Haynes RK, Wong HN, Staines HM (2011) Artemisone uptake in Plasmodium falciparum-infected erythrocytes. Antimicrob Agents Chemother 55:550–556

    Article  PubMed  CAS  Google Scholar 

  48. Yang YZ, Little B, Meshnick SR (1994) Alkylation of proteins by artemisinin. Effects of heme, pH, and drug structure. Biochem Pharmacol 48:569–573

    PubMed  CAS  Google Scholar 

  49. Rosenthal PJ (2001) Antimalarial chemotherapy: mechanisms of action, resistance, and new directions in drug discovery. Humana, Totowa, NJ

    Google Scholar 

  50. Akoachere M, Buchholz K, Fischer E, Burhenne J, Haefeli WE, Schirmer RH, Becker K (2005) In vitro assessment of methylene blue on chloroquine-sensitive and -resistant Plasmodium falciparum strains reveals synergistic action with artemisinins. Antimicrob Agents Chemother 49:4592–4597

    Article  PubMed  CAS  Google Scholar 

  51. Buchholz K, Schirmer RH, Eubel JK, Akoachere MB, Dandekar T, Becker K, Gromer S (2008) Interactions of methylene blue with human disulfide reductases and their orthologues from Plasmodium falciparum. Antimicrob Agents Chemother 52:183–191

    Article  PubMed  CAS  Google Scholar 

  52. Haynes RK, Chan WC, Wong HN, Li KY, Wu WK, Fan KM, Sung HH, Williams ID, Prosperi D, Melato S et al (2010) Facile oxidation of leucomethylene blue and dihydroflavins by artemisinins: relationship with flavoenzyme function and antimalarial mechanism of action. ChemMedChem 5:1282–1299

    Article  PubMed  CAS  Google Scholar 

  53. Haynes RK, Cheu KW, Tang MM, Chen MJ, Guo ZF, Guo ZH, Coghi P, Monti D (2011) Reactions of antimalarial peroxides with each of leucomethylene blue and dihydroflavins: flavin reductase and the cofactor model exemplified. ChemMedChem 6:279–291

    Article  PubMed  CAS  Google Scholar 

  54. Avery MA, Gao F, Chong WK, Mehrotra S, Milhous WK (1993) Structure-activity relationships of the antimalarial agent artemisinin. 1. Synthesis and comparative molecular field analysis of C-9 analogs of artemisinin and 10-deoxoartemisinin. J Med Chem 36:4264–4275

    Article  PubMed  CAS  Google Scholar 

  55. Jefford CW, Burger U, Millasson-Schmidt P, Bernardinelli G, Robinson BL, Peters W (2000) Epiartemisinin, a remarkably poor antimalarial: implications for the mode of action. Helv Chim Acta 83:1239–1246

    Article  CAS  Google Scholar 

  56. Vennerstrom JL, Arbe-Barnes S, Brun R, Charman SA, Chiu FC, Chollet J, Dong Y, Dorn A, Hunziker D, Matile H et al (2004) Identification of an antimalarial synthetic trioxolane drug development candidate. Nature 430:900–904

    Article  PubMed  CAS  Google Scholar 

  57. Tang Y, Dong Y, Karle JM, DiTusa CA, Vennerstrom JL (2004) Synthesis of tetrasubstituted ozonides by the Griesbaum coozonolysis reaction: diastereoselectivity and functional group transformations by post-ozonolysis reactions. J Org Chem 69:6470–6473

    Article  PubMed  CAS  Google Scholar 

  58. Vennerstrom JL, Dong Y, Chollet J, Matile H (2002) Spiro and dispiro 1,2,4-trioxolane antimalarials. US Patent 6486199

    Google Scholar 

  59. Vennerstrom JL, Tang Y, Dong Y, Chollet J, Matile H, Padmanilayam M, Charman WN (2004) Spiro and dispiro 1,2,4-trioxolane antimalarials. US Patent 6825230

    Google Scholar 

  60. Vennerstrom JL, Dong Y, Charman SA, Wittlin S, Chollet J, Wang X, Sriraghavan K, Zhou L, Matile H, Charman WN (2008) Spiro and dispiro 1,2,4-trioxolane antimalarials. US Patent 2008/0125441 A1

    Google Scholar 

  61. Dong Y, Chollet J, Matile H, Charman SA, Chiu FC, Charman WN, Scorneaux B, Urwyler H, Santo Tomas J, Scheurer C et al (2005) Spiro and dispiro-1,2,4-trioxolanes as antimalarial peroxides: charting a workable structure-activity relationship using simple prototypes. J Med Chem 48:4953–4961

    Article  PubMed  CAS  Google Scholar 

  62. Tang Y, Dong Y, Wittlin S, Charman SA, Chollet J, Chiu FC, Charman WN, Matile H, Urwyler H, Dorn A et al (2007) Weak base dispiro-1,2,4-trioxolanes: potent antimalarial ozonides. Bioorg Med Chem Lett 17:1260–1265

    Article  PubMed  CAS  Google Scholar 

  63. Vennerstrom JL, Dong Y, Chollet J, Matile H, Wang X, Sriraghavan K, Charman WN (2008) Spiro and dispiro 1,2,4-trioxolane antimalarials. US Patent 7371778

    Google Scholar 

  64. Zhou L, Alker A, Ruf A, Wang X, Chiu FC, Morizzi J, Charman SA, Charman WN, Scheurer C, Wittlin S et al (2008) Characterization of the two major CYP450 metabolites of ozonide (1,2,4-trioxolane) OZ277. Bioorg Med Chem Lett 18:1555–1558

    Article  PubMed  CAS  Google Scholar 

  65. Dong Y, Wittlin S, Sriraghavan K, Chollet J, Charman SA, Charman WN, Scheurer C, Urwyler H, Santo Tomas J, Snyder C et al (2010) The structure-activity relationship of the antimalarial ozonide arterolane (OZ277). J Med Chem 53:481–491

    Article  PubMed  CAS  Google Scholar 

  66. Dong Y, Tang Y, Chollet J, Matile H, Wittlin S, Charman SA, Charman WN, Tomas JS, Scheurer C, Snyder C et al (2006) Effect of functional group polarity on the antimalarial activity of spiro and dispiro-1,2,4-trioxolanes. Bioorg Med Chem 14:6368–6382

    Article  PubMed  CAS  Google Scholar 

  67. Creek DJ, Charman WN, Chiu FC, Prankerd RJ, Dong Y, Vennerstrom JL, Charman SA (2008) Relationship between antimalarial activity and heme alkylation for spiro- and dispiro-1,2,4-trioxolane antimalarials. Antimicrob Agents Chemother 52:1291–1296

    Article  PubMed  CAS  Google Scholar 

  68. Uhlemann AC, Wittlin S, Matile H, Bustamante LY, Krishna S (2007) Mechanism of antimalarial action of the synthetic trioxolane RBX11160 (OZ277). Antimicrob Agents Chemother 51:667–672

    Article  PubMed  CAS  Google Scholar 

  69. Creek DJ, Ryan E, Charman WN, Chiu FC, Prankerd RJ, Vennerstrom JL, Charman SA (2009) Stability of peroxide antimalarials in the presence of human hemoglobin. Antimicrob Agents Chemother 53:3496–3500

    Article  PubMed  CAS  Google Scholar 

  70. O’Neill PM, Posner GH (2004) A medicinal chemistry perspective on artemisinin and related endoperoxides. J Med Chem 47:2945–2964

    Article  PubMed  Google Scholar 

  71. Araujo NC, Barton V, Jones M, Stocks PA, Ward SA, Davies J, Bray PG, Shone AE, Cristiano ML, O’Neill PM (2009) Semi-synthetic and synthetic 1,2,4-trioxaquines and 1,2,4-trioxolaquines: synthesis, preliminary SAR and comparison with acridine endoperoxide conjugates. Bioorg Med Chem Lett 19:2038–2043

    Article  PubMed  CAS  Google Scholar 

  72. WHO. http://www.who.int/malaria/publications/atoz/coa_website5.pdf. Accessed 19 Dec 2010

  73. FDA. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm149559.htm. Accessed 19 Dec 2010

  74. MMV. http://www.mmv.org/research-development/project-portfolio/phase-iia. Accessed 20 Dec 2010

  75. Ranbaxy. http://www.ranbaxy.com/socialresposbility/mm.aspx. Accessed 20 Dec 2010

  76. Charman SA, Arbe-Barnes S, Bathurst IC, Brun R, Campbell M, Charman WN, Chiu FC, Chollet J, Craft JC, Creek DJ et al (2011) Synthetic ozonide drug candidate OZ439 offers new hope for a single-dose cure of uncomplicated malaria. Proc Natl Acad Sci USA 108:4400–4405

    Article  PubMed  CAS  Google Scholar 

  77. http://www.corporatecitizenship.novartis.com/patients/access-medicines/intellectual-property/biodiversity.shtml. Accessed 05 Jan 2011

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan A. Šolaja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel AG

About this chapter

Cite this chapter

Opsenica, D.M., Šolaja, B.A. (2011). Second-Generation Peroxides: The OZs and Artemisone. In: Staines, H., Krishna, S. (eds) Treatment and Prevention of Malaria. Milestones in Drug Therapy. Springer, Basel. https://doi.org/10.1007/978-3-0346-0480-2_10

Download citation

Publish with us

Policies and ethics