Skip to main content

Holomorphic Curves and Real Three-Dimensional Dynamics

  • Chapter
Book cover Visions in Mathematics

Part of the book series: Modern Birkhäuser Classics ((MBC))

Abstract

In this paper we describe new tools for studying smooth dynamical systems on three-manifolds. We also mention some interesting open problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Abbas and H. Hofer, Holomorphic curves and global questions in contact geometry, to appear in Birkhäuser.

    Google Scholar 

  2. V.I. Arnold, First steps in symplectic topology, Russian Mathematical Surveys 41 (1986), 1–21.

    Article  Google Scholar 

  3. V. Bangert, On the existence of closed geodesics on two-spheres, Internat. J. Math. 4:1 (1993), 1–10.

    Article  MATH  MathSciNet  Google Scholar 

  4. D. Benneqtjin, Entrelacements et équations de Pfaff, Astérisque 107–108(1983), 83–161.

    Google Scholar 

  5. W. Chen, Pseudoholomorphic curves and the Weinstein conjecture, Comm. Anal. Geom. 8:1 (2000), 115–131.

    MATH  MathSciNet  Google Scholar 

  6. C. Conley, E. Zehnder, The Birkhoff-Lewis fixed point theorem and a conjecture by V.I. Arnold, Inv. Math. 73 (1983), 33–49.

    Article  MATH  MathSciNet  Google Scholar 

  7. Y. Eliashberg, Classification of overtwisted contact structures on three manifolds, Inv. Math. (1989), 623–637.

    Google Scholar 

  8. Y. Eliashberg, Filling by holomorphic discs and its applications, London Math. Society Lecture Notes, Series 151 (1991), 45–67.

    MathSciNet  Google Scholar 

  9. Y. Eliashberg, Contact 3-manifolds, twenty year since J. Martinet’s work, Ann. Inst. Fourier 42 (1992), 165–192.

    MATH  MathSciNet  Google Scholar 

  10. Y. Eliashberg, Legendrian and transversal knots in tight contact mani-folds, in “Topological Methods in Modern Mathematics”, Publish or Perish, 1993.

    Google Scholar 

  11. Y. Eliashberg, Classification of contact structures on R 3, Inter. Math. Res. Notices 3 (1993), 87–91.

    Article  MathSciNet  Google Scholar 

  12. Y. Eliashberg, Invariants in contact topology, Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), Doc. Math., 327–338.

    MathSciNet  Google Scholar 

  13. Y. Eliashberg, A. Givental, H. Hofer, in this volume.

    Google Scholar 

  14. Y. Eliashberg, H. Hofer, A Hamiltonian characterization of the three-ball, P. Hess Memorial Volume, Differential and Integral Equations 7(1994), 1303–1324.

    MATH  MathSciNet  Google Scholar 

  15. A. Floer, H. Hofer, C. Viterbo, The Weinstein conjecture in P × l, Math. Zeit. 203 (1989), 335–378.

    MathSciNet  Google Scholar 

  16. J. Franks, A new proof of the Brouwer plane translation theorem, Ergodic Theory and Dynamical Systems 12 (1992), 217–226.

    Article  MATH  MathSciNet  Google Scholar 

  17. J. Franks, Geodesics on S 2 and periodic points of annulus homeomorphisms, Invent. Math. 108 (1992), 403–418.

    Article  MATH  MathSciNet  Google Scholar 

  18. J. Franks, Area preserving homeomorphisms of open surfaces of genus zero, preprint, 1995.

    Google Scholar 

  19. V.L. Ginzburg, An embedding S 2n−1R 2n, 2n − 1 ≥ 7, whose Hamiltonian flow has no periodic trajectories, Inter. Math. Research Notices 2(1995), 83–97.

    Article  MathSciNet  Google Scholar 

  20. V.L. Ginzburg, A smooth counterexample to the Hamiltonian Seifert conjecture in R 6, Inter. Math. Research Notices 13 (1997), 641–650.

    Article  MathSciNet  Google Scholar 

  21. E. Giroux, Convexité en topologie de contact, Comm. Math. Helvetici 66 (1991), 637–677.

    Article  MATH  MathSciNet  Google Scholar 

  22. M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307–347.

    Article  MATH  MathSciNet  Google Scholar 

  23. M. Herman, Examples of compact hypersurfaces in R 2p, 2p ≥ 6 with no periodic orbits, manuscript, 1994.

    Google Scholar 

  24. H. Hofer, Pseudoholomorphic curves in symplectisations with application to the Weinstein conjecture in dimension three, Invent. Math. 114(1993), 515–563.

    Article  MATH  MathSciNet  Google Scholar 

  25. H. Hofer, Holomorphic curves and dynamics in dimension three, Lecture Notes for the Proceedings of the IAS/Park City Institute, 7 (1999), 37–101.

    MathSciNet  Google Scholar 

  26. H. Hofer, M. Kriener, Holomorphic curves in contact geometry, in “Proceedings of Symposia in Pure Mathematics, Differential Equations; La Pietra 1996, Conference on Differential Equations”, marking the 70th birthday of Peter Lax and Louis Nirenberg, 65 (1996), 77–132.

    MathSciNet  Google Scholar 

  27. H. Hofer, C. Viterbo, The Weinstein conjecture in the presence of holomorphic spheres, Comm. Pure Appl. Math. 45:5 (1992), 583–622.

    Article  MATH  MathSciNet  Google Scholar 

  28. H. Hofer, K. Wysocki, E. Zehnder, Properties of pseudoholomorphic curves in symplectisations II: Embedding controls and algebraic invariants, GAFA 5 (1995), 270–328.

    Article  MATH  MathSciNet  Google Scholar 

  29. H. Hofer, K. Wysocki, E. Zehnder, A characterisation of the tight three-sphere, Duke Math. J. 81:1 (1995), 159–226.

    Article  MATH  MathSciNet  Google Scholar 

  30. H. Hofer, K. Wysocki, E. Zehnder, Properties of pseudoholomorphic curves in symplectisations I: Asymptotics, Ann. Inst. Henri Poincaré 13 (1996), 337–379.

    MATH  MathSciNet  Google Scholar 

  31. H. Hofer, K. Wysocki, E. Zehnder, Properties of pseudoholomorphic curves in symplectisations IV: Asymptotics with degeneracies, in “Contact and Symplectic Geometry” (C. Thomas, ed.), Cambridge University Press (1996), 78–117.

    Google Scholar 

  32. H. Hofer, K. Wysocki, E. Zehnder, Unknotted periodic orbits for Reeb flows on the three-sphere, Top. Methods in Nonlinear Analysis 7:2(1996), 219–244.

    MATH  MathSciNet  Google Scholar 

  33. H. Hofer, K. Wysocki, E. Zehnder, The dynamics on a strictly convex energy surface in R 4, Ann. of Math. (2) 148:1 (1998), 197–289.

    Article  MATH  MathSciNet  Google Scholar 

  34. H. Hofer, K. Wysocki, E. Zehnder, Properties of pseudoholomorphic curves in symplectisations III: Fredholm theory, in “Topics in Non-linear Analysis, Progress in Nonlinear Differential Equations and Their Applications”, 35 (1999), 381–476.

    MathSciNet  Google Scholar 

  35. H. Hofer, K. Wysocki, E. Zehnder, A characterization of the tight three-sphere II, Comm. Pure and Appl. Math. LII (1999), 1139–1177.

    Article  MathSciNet  Google Scholar 

  36. H. Hofer, K. Wysocki, E. Zehnder, Finite energy foliations of tight three-spheres and Hamiltonian dynamics, preprint.

    Google Scholar 

  37. H. Hofer, E. Zehnder. Hamiltonian Dynamics and Symplectic Invariants, Birkhäuser, 1994.

    Google Scholar 

  38. K. Ktjperberg, A smooth counter example to the Seifert conjecture in dimension three, Annals of Mathematics 140 (1994), 723–732.

    Article  MathSciNet  Google Scholar 

  39. G. Kjjperberg, A volumepreserving counterexample to the Seifert conjecture, Comm. Math. Helvetici 71:1 (1996), 70–97.

    Article  Google Scholar 

  40. G. Liu, G. Tian, Weinstein conjecture and GW invariants, preprint, 1999.

    Google Scholar 

  41. J. Martinet, Formes de contact sur les variétés de dimension 3, Springer LNM 209 (1971), 142–163.

    MathSciNet  Google Scholar 

  42. D. Mcduff, The local behaviour of J-holomorphic curves in almost complex 4-manifolds, J. Diff. Geom. 34 (1991), 143–164.

    MATH  MathSciNet  Google Scholar 

  43. D. Mcduff, D. Salamon, Introduction to Symplectic Topology, Oxford University Press, 1998.

    Google Scholar 

  44. M. Micallef, B. White, The structure of branch points in minimal surfaces and in pseudoholomorphic curves, Ann. of Math. 141 (1994), 35–85.

    Article  MathSciNet  Google Scholar 

  45. P. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 31 (1978), 157–184.

    Article  MathSciNet  Google Scholar 

  46. P. Rabinowitz, Periodic solutions of Hamiltonian systems on a prescribed energy surface, J. Diff. Equ. 33 (1979), 336–352.

    Article  MATH  MathSciNet  Google Scholar 

  47. C. Robinson, A global approximation theorem for Hamiltonian systems, Proc. Symposium in Pure Math. XIV (1970), 233–244.

    Google Scholar 

  48. A. Weinstein, Periodic orbits for convex Hamiltonian systems, Ann. Math. 108 (1978), 507–518.

    Article  Google Scholar 

  49. A. Weinstein, On the hypothesis of Rabinowitz’s periodic orbit theorems, J. Diff. Equ. 33 (1979), 353–358.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Birkhäuser Verlag, Basel

About this chapter

Cite this chapter

Hofer, H. (2000). Holomorphic Curves and Real Three-Dimensional Dynamics. In: Alon, N., Bourgain, J., Connes, A., Gromov, M., Milman, V. (eds) Visions in Mathematics. Modern Birkhäuser Classics. Birkhäuser Basel. https://doi.org/10.1007/978-3-0346-0425-3_5

Download citation

Publish with us

Policies and ethics