Skip to main content

Discrete and Continuous: Two Sides of the Same?

  • Chapter
Visions in Mathematics

Part of the book series: Modern Birkhäuser Classics ((MBC))

Abstract

How deep is the dividing line between discrete and continuous mathematics? Basic structures and methods of both sides of our science are quite different. But on a deeper level, there is a more solid connection than meets the eye.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. van Aardenne-Ehrenfest, On the impossibility of a just distribution, Nederl. Akad. Wetensch. Proc. 52 (1949), 734–739; Indagationes Math. 11 (1949) 264–269.

    MATH  MathSciNet  Google Scholar 

  2. F. Alizadeh, Interior point methods in semidefinite programming with applications to combinatorial optimization, SIAM J. on Optimization 5 (1995), 13–51.

    Article  MATH  MathSciNet  Google Scholar 

  3. N. Alon, J. Spencer, The Probabilistic Method. With an appendix by Paul Erdős, Wiley, New York, 1992.

    Google Scholar 

  4. E. Andre’ev, On convex polyhedra in Lobachevsky spaces, Mat. Sbornik, Nov. Ser. 81 (1970), 445–478.

    Google Scholar 

  5. S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy, Proof verification and hardness of approximation problems, Proc. 33rd FOCS (1992), 14–23.

    Google Scholar 

  6. I. Bárány, A short proof of Kneser’s conjecture, J. Combin. Theory A 25 (1978), 325–326.

    Article  MATH  Google Scholar 

  7. J. Beck, Roth’s estimate of the discrepancy of integer sequences is nearly sharp, Combinatorica 1 (1981), 319–325.

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Beck, W. Chen, Irregularities of Distribution, Cambridge Univ. Press (1987).

    Google Scholar 

  9. J. Beck, V.T. Sós, Discrepancy Theory, Chapter 26, in “Handbook of Combinatorics” (R.L. Graham, M. Grötschel, L. Lovász, eds.), North-Holland, Amsterdam (1995).

    Google Scholar 

  10. A. Bjorner, Topological methods, in “Handbook of Combinatorics” ( R.L. Graham, L. Lovász, M. Grötschel, eds.), Elsevier, Amsterdam, 1995, 1819–1872.

    Google Scholar 

  11. J. Bourgain, On Lipschitz embedding of finite metric spaces in Hilbert space, Isr. J. Math. 52 (1985), 46–52.

    Article  MATH  MathSciNet  Google Scholar 

  12. S.Y. Cheng, Eigenfunctions and nodal sets, Commentarii Mathematici Helvetici 51 (1976), 43–55.

    Article  MATH  MathSciNet  Google Scholar 

  13. A.J. Chorin, Vorticity and Turbulence, Springer, New York, 1994.

    MATH  Google Scholar 

  14. Y. Colín de Verdiére, Sur un nouvel invariant des graphes et un critére de planarité, Journal of Combinatorial Theory Series A 50 (1990), 11–21.

    Article  MATH  Google Scholar 

  15. F.R.K. Chung, Spectral Graph Theory, CBMS Reg. Conf. Series 92, Amer. Math. Soc, 1997.

    Google Scholar 

  16. C. Delorme, S. Poljak, Combinatorial properties and the complexity of max-cut approximations, Europ. J. Combin. 14 (1993), 313–333.

    Article  MATH  MathSciNet  Google Scholar 

  17. M. Deza, M. Laurent, Geometry of Cuts and Metrics, Springer Verlag, 1997.

    Google Scholar 

  18. R.M. Dudley, Distances of probability measures and random variables, Ann. Math. Stat. 39 (1968), 1563–1572.

    MATH  MathSciNet  Google Scholar 

  19. M. Dyer, A. Frieze, Computing the volume of convex bodies: a case where randomness provably helps, in “Probabilistic Combinatorics and Its Applications” (Béla Bollobás, ed.), Proceedings of Symposia in Applied Mathematics, Vol. 44 (1992), 123–170.

    Google Scholar 

  20. M. Dyer, A. Frieze, R. Kannan, A random polynomial time algorithm for approximating the volume of convex bodies, Journal of the ACM 38 (1991), 1–17.

    Article  MATH  MathSciNet  Google Scholar 

  21. M.X. Goemans, D.P. Williamson, 878-Approximation algorithms for MAX CUT and MAX 2SAT, Proc. 26th ACM Symp. on Theory of Computing (1994), 422–431.

    Google Scholar 

  22. M. Grötschel, L. Lovász, A. Schrijver, Geometric Algorithms and Combinatorial Optimization, Springer, 1988.

    Google Scholar 

  23. J. Håstad, Some optimal in-approximability results, Proc. 29th ACM Symp. on Theory of Comp. (1997), 1–10.

    Google Scholar 

  24. H. van der Holst, A short proof of the planarity characterization of Colin de Verdiére, Journal of Combinatorial Theory, Series A 65 (1995), 269–272.

    Article  MATH  Google Scholar 

  25. M. Jerrum, A. Sinclair, Approximating the permanent, SI AM J. Computing 18 (1989), 1149–1178.

    Article  MATH  MathSciNet  Google Scholar 

  26. M. Kneser, Aufgabe No. 360, Jber. Deutsch. Math. Ver. 58 (1955).

    Google Scholar 

  27. P. Koebe, Kontaktprobleme der konformen Abbildung, Berichte über die Verhandlungen d. Sächs. Akad. d. Wiss., Math.—Phys. Klasse 88 (1936), 141–164.

    Google Scholar 

  28. F.T. Leighton, S. Rao, An approximate max-flow min-cut theorem for uniform multicommodity flow problems with applications to approximation algorithms, Proc. 29th Annual Symp. on Found, of Computer Science, IEEE Computer Soc. (1988), 422–431.

    Google Scholar 

  29. N. Linial, E. London, Y. Rabinovich, The geometry of graphs and some of its algebraic applications, Combinatorica 15 (1995), 215–245.

    Article  MATH  MathSciNet  Google Scholar 

  30. L. Lovász, Kneser’s conjecture, chromatic number, and homotopy, J. Comb. Theory A 25 (1978), 319–324.

    Article  MATH  Google Scholar 

  31. L. Lovász, On the Shannon capacity of graphs, IEEE Trans. Inform. Theory 25 (1979), 1–7.

    Article  MATH  MathSciNet  Google Scholar 

  32. L. Lovász, P. Major, A note on a paper of Dudley, Studia Sci. Math. Hung. 8 (1973), 151–152.

    Google Scholar 

  33. L. Lovász, M.D. Plummer, Matching Theory, Akadémiai Kiadó-North Holland, Budapest, 1986.

    MATH  Google Scholar 

  34. L. Lovász, A. Schrijver, Cones of matrices and set-functions, and 0-1 optimization, SIAM J. on Optimization 1 (1990), 166–190.

    Article  Google Scholar 

  35. L. Lovász, A. Schrijver, A Borsuk theorem for antipodal links and a spectral characterization of linklessly embeddable graphs, Proceedings of the AMS 126 (1998), 1275–1285.

    Article  MATH  Google Scholar 

  36. L. Lovász, M. Simonovits, Random walks in a convex body and an improved volume algorithm, Random Structures and Alg. 4 (1993), 359–412.

    Article  MATH  Google Scholar 

  37. J. Matoušek, Geometric Discrepancy, Springer Verlag, 1999.

    Google Scholar 

  38. J. Matoušek, J. Spencer, Discrepancy in arithmetic progressions, J. Amer. Math. Soc. 9 (1996), 195–204.

    Article  MATH  MathSciNet  Google Scholar 

  39. D. Ornstein, Bernoulli shifts with the same entropy are isomorphic, Advances in Math. 4 (1970), 337–352.

    Article  MATH  MathSciNet  Google Scholar 

  40. L.E. Payne, H.F. Weinberger, An optimal Poincaré inequality for convex domains, Arch. Rat. mech. Anal. 5 (1960), 286–292.

    Article  MATH  MathSciNet  Google Scholar 

  41. B. Rodin, D. Sullivan, The convergence of circle packings to the Riemann mapping, J. Differential Geom. 26 (1987), 349–360.

    MATH  MathSciNet  Google Scholar 

  42. G.-C. Rota, L.H. Harper, Matching theory, an introduction, in “Advances in Probability Theory and Related Topics” (P. Ney, ed.) Vol I, Marcel Dekker, New York (1971) 169–215.

    Google Scholar 

  43. K.F. Roth, Remark concerning integer sequences, Acta Arith. 9 (1964), 257–260.

    MATH  MathSciNet  Google Scholar 

  44. W. Schmidt, Irregularities of distribution, Quart. J. Math. Oxford 19 (1968), 181–191.

    Article  MATH  Google Scholar 

  45. D.A. Spielman, S.-H. Teng, Spectral partitioning works: planar graphs and finite element meshes, Proc. 37th Ann. Symp. Found. of Comp. Sci., IEEE (1996), 96–105.

    Google Scholar 

  46. V. Strassen, The existence of probability measures with given marginals, Ann. Math. Statist 36 (1965), 423–439.

    Article  MATH  MathSciNet  Google Scholar 

  47. W. Thurston, The Geometry and Topology of Three-manifolds, Princeton Lecture Notes, Chapter 13, Princeton, 1985.

    Google Scholar 

  48. H. Wolkowitz, Some applications of optimization in matrix theory, Linear Algebra and its Applications 40 (1981), 101–118.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Birkhäuser, Springer Basel AG

About this chapter

Cite this chapter

Lovász, L. (2010). Discrete and Continuous: Two Sides of the Same?. In: Alon, N., Bourgain, J., Connes, A., Gromov, M., Milman, V. (eds) Visions in Mathematics. Modern Birkhäuser Classics. Birkhäuser Basel. https://doi.org/10.1007/978-3-0346-0422-2_13

Download citation

Publish with us

Policies and ethics