Skip to main content

How To Measure Smoothness

  • Chapter
  • First Online:
Theory of Function Spaces II

Part of the book series: Modern Birkhäuser Classics ((MBC))

  • 1677 Accesses

Abstract

This book deals with spaces of functions and distributions of Hölder, Sobolev, Hardy, Campanato, Besov type and their descendants. So it is quite clear that we restrict our attention also in this introductory chapter to spaces of these types. There is hardly any doubt that these types of spaces were and are the backbone (in the widest sense of the word) of the theory of function spaces from the very beginning up to our time. On the other hand, in the last few decades many other types of function spaces have been treated extensively, some of them closely connected with the spaces considered here (anisotropic and weighted spaces, spaces with dominating mixed derivatives, spaces on non-smooth domains and on general structures), while others have been based on different principles (Lorentz and Orlicz spaces, etc.). The following books cover a large variety of different aspects of the theory of function spaces in the widest sense: [Sob4, Nik2, BIN, KJF, Pee6, Ste1, StW2, Ada, Maz, MaS, JoW, Triα, Triß, ScT]. Finally, we refer to the recent surveys [BKLN, KuN1] (1988) concentrating mainly, but not exclusively, on developments in the Soviet Union.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

  1. Adams, R.A., Sobolev Spaces. New York, Academic Press, 1975.

    Google Scholar 

  2. Agmon, S., Douglis, A., and Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I. Comm. Pure Appl. Math. 12 (1959), 623–727.

    Google Scholar 

  3. Arnold, V.I., Mathematical Methods of Classical Mechanics. New York, Springer 1978 (translation from Russian).

    Google Scholar 

  4. Aronszajn, N., Boundary values of functions with finite Dirichlet integral. Techn. Report 14, Univ. of Kansas, 1955, 77–94.

    Google Scholar 

  5. Aronszajn, N. and Smith, K.T., Theory of Bessel potentials, I. Ann. Inst. Fourier (Grenoble) 11 (1961), 385–476.

    Google Scholar 

  6. Aubin, T., Espaces de Sobolev sur les variétés Riemanniennes. Bull. Sci. Math. 100 (1976), 149–173.

    Google Scholar 

  7. Aubin, T., Nonlinear Analysis on Manifolds. Monge-Ampère Equations, New York, Springer, 1982.

    Google Scholar 

  8. Bergh, J. and Löfström, J., Interpolation Spaces, an Introduction. Berlin, Springer, 1976.

    Google Scholar 

  9. Besov, O.V., On a family of function spaces. Embedding theorems and extensions (Russian). Dokl. Akad. Nauk SSSR 126 (1959), 1163–1165.

    Google Scholar 

  10. Besov, O.V., On a family of function spaces in connection with embeddings and extensions (Russian). Trudy Mat. Inst. Steklov 60 (1961), 42–81.

    Google Scholar 

  11. Besov, O.V., On Sobolev–Liouville and Lizorkin–Triebel spaces in domains (Russian). Trudy Mat. Inst. 192 (1990), 20–34.

    Google Scholar 

  12. Besov, O.V., Il’in, V.P. and Nikol’skij, S.M., Integral Representations of Functions and Embedding Theorems (Russian). Moskva, Nauka 1975, (there are two English translations).

    Google Scholar 

  13. Besov, O.V., Kudrjavcev, L.D., Lizorkin, P.I., and Nikol’skij, S.M., Studies on the theory of spaces of differentiable functions of several variables (Russian). Trudy Mat. Inst. Steklov 182 (1988), 68–127. (English translation, Proc. Steklov Inst. Math. 182 (1990), 73–140).

    Google Scholar 

  14. Brudnyj, Ju.A., Krejn, S.G., and Semenov, E.M., Interpolation of linear operators (Russian). In: Itogi nauki i techniki, Ser. mat. analiz 24, Moskva, Akademija nauk SSSR, 1986, 3–163.

    Google Scholar 

  15. Boas, R.P., Entire Functions. New York, Adademic Press, 1954.

    Google Scholar 

  16. Bojarski, B., Sharp maximal operators of fractional order and Sobolev imbedding inequalities. Bull. Polish Acad. Sci., Ser. Math. 33 (1985), 7–16.

    Google Scholar 

  17. Brudnyj, Ju.A., Spaces defined by means of local approximation (Russian). Trudy Moskov. Mat. Obsc. 24 (1971), 69–132.

    Google Scholar 

  18. Butzer, P.L. and Berens, H., Semi-Groups of Operators and Approximation. Berlin, Springer, 1967.

    Google Scholar 

  19. Bui, H.Q., Some aspects of weighted and non-weighted Hardy spaces. Kôkyûroku Res. Inst. Math. Sci. 383 (1980), 38–56.

    Google Scholar 

  20. Bui, H.Q., On Besov, Hardy and Triebel spaces for 0 < p < 1. Ark. Mat. 21 (1983), 159–184.

    Google Scholar 

  21. Bui, H.Q., Characterizations of weighted Besov and Triebel–Lizorkin spaces via temperatures. J. Funct. Anal. 55 (1984), 39–62.

    Google Scholar 

  22. Bui, H.Q., Representation theorems and atomic decomposition of Besov spaces. Math. Nachr. 132 (1987), 301–311.

    Google Scholar 

  23. Butzer, P.L. and Nessel, R.J., Fourier Analysis and Approximation. Basel, Birkhäuser, 1971.

    Google Scholar 

  24. Calderón, A.P., Lebesgue spaces of differential functions. Conf. Part. Diff. Equations, Univ. of California, 1960.

    Google Scholar 

  25. Calderón, A.P., Lebesgue spaces of differentiable functions and distributions. In: “Part. Diff. Equations,” Proc. Symp. Math. 4, Amer. Math. Soc. (1961), 33–49.

    Google Scholar 

  26. Calderón, A.P., Intermediate spaces and interpolation. Studia Math., Seria specjalna, 1 (1963), 31–34.

    Google Scholar 

  27. Calderón, A.P., Estimates for singular integral operators in terms of maximal functions. Studia Math. 44 (1972), 563–582.

    Google Scholar 

  28. Campanato, S., Propriétà di inclusione per spaci di Morrey. Ricerche Mat. 12 (1963), 67–86.

    Google Scholar 

  29. Campanato, S., Propriétà di hölderianità di alcune classi di funzioni. Ann. Scuola Norm. Sup. Pisa 17 (1963), 175–188.

    Google Scholar 

  30. Campanato, S., Propriétà di una famiglia di spazi funzionali. Ann. Scuola Norm. Sup. Pisa 18 (1964), 137–160.

    Google Scholar 

  31. Campanato, S., Teoremi di interpolazione per transformazioni che applicano L p in C k,α. Ann. Scuola Norm. Sup. Pisa 18 (1964), 345–360.

    Google Scholar 

  32. Calderón, A.P. and Scott, R., Sobolev type inequalities for p > 0. Studia Math. 62 (1978), 75–92.

    Google Scholar 

  33. Calderón, A.P. and Torchinsky, A., Parabolic maximal functions associated with a distribution, I,II. Advances in Math. 16 (1975), 1–64, and 24 (1977), 101–171.

    Google Scholar 

  34. Christ, M., The extension problem for certain function spaces involving fractional orders of differentiability. Ark. Mat. 22 (1984), 63–81.

    Google Scholar 

  35. Coifman, R.R., Meyer, Y. and Stein, E.M., Some new function spaces and their applications to harmonic analysis. J. Funct. Anal. 62 (1985), 304–335.

    Google Scholar 

  36. Cwikel, M., Milman, M. and Sagher, Y. Complex interpolation of some quasi-Banach spaces. J. Funct. Anal. 65 (1986), 339–347.

    Google Scholar 

  37. Coifman, R.R., A real variable characterization of H p. Studia Math. 51 (1974), 269–274.

    Google Scholar 

  38. Coifman, R.R. and Rochberg, R. Representation theorems for holomorphic and harmonic functions in L p. Astérisque 77 (1980), 11–66.

    Google Scholar 

  39. Coifman, R.R. and Weiss, G., Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569–645.

    Google Scholar 

  40. Cwikel, M. and Sagher, Y., Analytic families of operators on some quasi-Banach spaces. Proc. Amer. Math. Soc. 102 (1988), 979–984.

    Google Scholar 

  41. Daubechies, I. Orthonormal bases of compact supported wavelets. Comm. Pure Appl. Math. 41 (1988), 909–996.

    Google Scholar 

  42. Daubechies, I., The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inform. Theory 36 (1990), 5, 961–1005.

    Google Scholar 

  43. DeVore, R.A. and Sharpley, R.C., Maximal functions measuring smoothness. Mem. Amer. Math. Soc. 47, 293 (1984), 1–115.

    Google Scholar 

  44. Dorronsoro, J.R., A characterization of potential spaces. Proc. Amer. Math. Soc. 95 (1985), 21–31.

    Google Scholar 

  45. Dorronsoro, J.R., Poisson integrals of regular functions. Trans. Amer. Math. Soc. 297 (1986), 669–685.

    Google Scholar 

  46. Edwards, R.E. and Gaudry, G.I. Littlewood–Payley and Multiplier Theory. Berlin, Springer, 1977.

    Google Scholar 

  47. Fefferman, C., Characterizations of bounded mean oscillation. Bull. Amer. Math. Soc. 77 (1971), 587–588.

    Google Scholar 

  48. Feichtinger, H.G. and Gröchenig, K., A unified approach to atomic decompositions via integral group representations. In “Function Spaces and Applications,” Proc. Conf. Lund 1986, Lect. Notes Math. 1302. Berlin, Springer 1988, 52–73.

    Google Scholar 

  49. Feichtinger, H.G. and Gröchenig, K., Banach spaces related to integrable group representations and their atomic decompositions, I. J. Funct. Anal. 86 (1989), 307–340. II. Monatsh. Math. 108 (1989), 129–148.

    Google Scholar 

  50. Fefferman, C. and Stein, E.M., Some maximal inequalities. Amer. J. Math. 93 (1971), 107–115.

    Google Scholar 

  51. Fefferman, C. and Stein, E.M., H p spaces of several variables. Acta Math. 129 (1972), 137–193.

    Google Scholar 

  52. Frazier, M., Han, Y.-S., Jawerth, B., and Weiss, G., The T1 theorem for Triebel–Lizorkin spaces. In “Harmonic Analysis and Partial Differential Equations (El Escorial, 1987),” Lect. Notes Math. 1384, Springer, Berlin 1989, 168–181.

    Google Scholar 

  53. Frazier, M., Jawerth, B., and Weiss, G., Littlewood–Paley theory and the study of function spaces. CBMS-AMS Regional Conf. Ser. 79, 1991.

    Google Scholar 

  54. Flett, T.M., Temperatures, Bessel potentials and Lipschitz spaces. Proc. London Math. Soc. 32 (1971), 385–451.

    Google Scholar 

  55. Flett, T.M., Lipschitz spaces of functions on the circle and the disc. J. Math. Anal. Appl. 39 (1972), 125–158.

    Google Scholar 

  56. Folland, G.B. and Stein, E.M., Hardy Spaces on Homogeneous Groups. Princeton, Univ. Press, 1982.

    Google Scholar 

  57. Franke, J., On the spaces \(F_{p,q}^s \) of Triebel–Lizorkin type: Pointwise multipliers and spaces on domains. Math. Nachr. 125 (1986), 29–68.

    Google Scholar 

  58. Frazier, M. and Jawerth, B., Decomposition of Besov spaces. Indiana Univ. Math. J. 34 (1985), 777–799.

    Google Scholar 

  59. Frazier, M. and Jawerth, B., The φ-transform and applications to distribution spaces. In “Function Spaces and Applications,” Proc. Conf. Lund 1986, Lect. Notes Math. 1302. Berlin, Springer, 1988, 223–246.

    Google Scholar 

  60. Frazier, M. and Jawerth, B., A discrete transform and decomposition of distribution spaces. J. Funct. Anal. 93 (1990), 34–170.

    Google Scholar 

  61. Gagliardo, E., Proprietà di alcune classi di funzioni in pi`u variabili. Ricerche Mat. 7 (1958), 102–137.

    Google Scholar 

  62. Geisler, M., Besov spaces on compact Lie groups, Math. Nachr. 139 (1988), 193–205.

    Google Scholar 

  63. Goldberg, D., A local version of real Hardy spaces, Duke Math. J. 46 (1979), 27–42.

    Google Scholar 

  64. Goldberg, D., Local Hardy spaces. In “Harmonic Analysis in Euclidean Spaces,” Proc. Symp. Pure Math. 35, I. Amer. Math. Soc. 1979, 245–248.

    Google Scholar 

  65. Grevholm, B., On the structure of the spaces \({\mathcal{L}}_k^{p,\lambda } \). Math. Scand. 26 (1970), 241–254.

    Google Scholar 

  66. Grisvard, P., Commutativité de deux foncteurs d’interpolation et applications. J. Math. Pures Appl. 45 (1966), 143–290.

    Google Scholar 

  67. Gröchenig, K., Unconditional bases in translation and dilation invariant functions spaces on \({\mathbb{R}}^{\it n}\). In “Constructive theory of functions (Varna 1987),” 174–183. Sofia, Bulgar. Acad. Sci., 1988.

    Google Scholar 

  68. Gröchenig, K., Describing functions: Atomic decompositions versus frames.

    Google Scholar 

  69. Hardy, G.H. and Littlewood, J.E., A maximal theorem with functiontheoretical applications. Acta Math. 54 (1930), 81–116.

    Google Scholar 

  70. Hardy, G.H. and Littlewood, J.E., Some properties of fractional integrals, I, II. Math. Z. 27 (1927), 565–606; 34 (1932), 403–439.

    Google Scholar 

  71. Hardy, G.H., The mean value of the modulus of an analytic function. Proc. L.M.S. 14 (1914), 269–277.

    Google Scholar 

  72. Hardy, G.H., Littlewood, J.E., and Pólya, G., Inequalities. Cambridge, Univ. Press, 1964, sec. ed. (first ed. 1934).

    Google Scholar 

  73. Hörmander, L., Estimates for translation invariant operators in L p spaces. Acta Math. 104 (1960), 93–140.

    Google Scholar 

  74. Hörmander, L., Linear Partial Differential Operators. Berlin, Springer, 1963.

    Google Scholar 

  75. Jawerth, B., Some observations on Besov and Lizorkin–Triebel spaces, Math. Scand. 40 (1977), 94–104.

    Google Scholar 

  76. Jawerth, B., The trace of Sobolev and Besov spaces if 0 < p < 1. Studia Math. 62 (1978), 65–71.

    Google Scholar 

  77. John, F. and Nirenberg, L., On functions of bounded mean oscillation. Comm. Pure Appl. Math. 14 (1961), 415–426.

    Google Scholar 

  78. Jonsson, A. and Wallin, H., Function spaces on subsets of \({\mathbb{R}}^n\). Math. Reports 2,1 (1984), 1–221.

    Google Scholar 

  79. Kaljabin, G.A. and Lizorkin, P.I., Spaces of functions of generalized smoothness. Math. Nachr. 133 (1987), 7–32.

    Google Scholar 

  80. Kufner, A., John, O., and Fučik, S., Function Spaces. Prague, Academia, 1977.

    Google Scholar 

  81. Kaljabin, G.A., Characterization of functions of spaces of Besov–Lizorkin– Triebel type (Russian). Dokl. Akad. Nauk SSSR 236 (1977), 1056–1059.

    Google Scholar 

  82. Kaljabin, G.A., The description of functions of classes of Besov–Lizorkin– Triebel type (Russian). Trudy Mat. Inst. Steklov 156 (1980), 82–109.

    Google Scholar 

  83. Kaljabin, G.A., Theorems on extensions, multipliers and diffeomorphisms for generalized Sobolev–Liouville classes in domains with Lipschitz boundary (Russian). Trudy Mat. Inst. Steklov 172 (1985), 173–186.

    Google Scholar 

  84. Komatsu, H., Fractional powers of operators, II. Interpolation spaces. Pacif. J. Math. 21 (1967), 89–111.

    Google Scholar 

  85. Krejn, S.G., Petunin, Ju.I., and Semenov, E.M., Interpolation of Linear Operators. Providence, Amer. Math. Soc. 1982 (Translation from Russian, Moskva, Nauka, 1978).

    Google Scholar 

  86. Krantz, S.G., Lipschitz spaces on stratified groups. Trans. Amer. Math. Soc. 269 (1982), 39–66.

    Google Scholar 

  87. Kudrjavcev, L.D. and Nikol’skij, S.M. Spaces of differentiable functions of several variables and embedding theorems (Russian). In: Itogi nauki i techniki, Ser. Sovremennye problemj mat. 26. Moskva: akad. nauk SSSR 1988, 5–157. (English translation: In: Analysis III, Spaces of differentiable functions, Encyclopaedia of Math. Sciences 26. Heidelberg, Springer 1990, 4–140).

    Google Scholar 

  88. Latter, R., A characterization of H p(\({\mathbb{R}}^n\)) in terms of atoms. Studia Math. 62 (1978), 93–101.

    Google Scholar 

  89. Lions, J.L. and Peetre, J., Sur une classe d’espaces d’interpolation. Inst. Hautes ´ Etudes Sci. Publ. Math. 19 (1964), 5–68.

    Google Scholar 

  90. Lizorkin, P.I., A Littlewood–Paley theorem for multiple Fourier integrals (Russian). Trudy Mat. Inst. Steklov 89 (1967), 214–230.

    Google Scholar 

  91. Lizorkin, P.I., On Fourier multipliers in the spaces L p,θ (Russian). Trudy Mat. Inst. Steklov 89 (1967), 231–248.

    Google Scholar 

  92. Lizorkin, P.I., Operators connected with fractional derivatives and classes of differentiable functions (Russian). Trudy Mat. Inst. Steklov 117 (1972), 212–243.

    Google Scholar 

  93. Lizorkin, P.I., Properties of functions of the spaces \(\Lambda _{p\theta }^r \) (Russian). Trudy Mat. Inst. Steklov 131 (1974), 158–181.

    Google Scholar 

  94. Lizorkin, P.I., Classes of functions constructed on the basis of spherical means (the case of spaces of Sobolev type) (Russian). Trudy Mat. Inst. Steklov 192 (1990), 122–139.

    Google Scholar 

  95. Lorentz, G.G., Approximation of Functions. New York: Holt, Rinehart & Winston, 1966.

    Google Scholar 

  96. Maz’ya, V.G. and Shaposhnikova, T.O., Theory of Multipliers in Spaces of Differentiable Functions. Boston, Pitman 1985.

    Google Scholar 

  97. Maz’ja, V.G., Sobolev Spaces. Berlin, Springer 1985 (Translation from Russian, Leningrad, Univ. 1985).

    Google Scholar 

  98. Meyers, G.N., Mean oscillation over cubes and Hölder continuity. Proc. Amer. Math. Soc. 15 (1964), 717–721.

    Google Scholar 

  99. Meyer, Y., Régularité des solutions des équations aux dériveés partielles non linéaires (d’ après J.M. Bony). Sém. Bourbaki, 32e année, 1979/80, no. 560.

    Google Scholar 

  100. Michlin, S.G., On multipliers of Fourier integrals (Russian). Dokl. Akad. Nauk SSSR 109 (1956), 701–703.

    Google Scholar 

  101. Michlin, S.G., Fourier integrals and multiple singular integrals (Russian). Vestnik Leningrad. Univ. Mat. Meh. Astronom. 7 (1957), 143–155.

    Google Scholar 

  102. Miranda, C., Partial Differential Equations of Elliptic Type. Sec. ed., Berlin, Springer, 1970.

    Google Scholar 

  103. Morrey, C.B., On the solutions of quasi linear elliptic partial differential equations. Trans. Amer. Math. Soc. 43 (1938), 126–166.

    Google Scholar 

  104. Muramuta, T., On imbedding theorems for Besov spaces of functions defined in general regions. Publ. Res. Inst. Math. Sci. Kyoto Univ. 7 (1971/72), 261–285.

    Google Scholar 

  105. Netrusov, Ju.V., Embedding theorems of Besov spaces into ideal spaces (Russian). Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 159 (1987), 69–82.

    Google Scholar 

  106. Netrusov, Ju.V., Embedding theorems for Lizorkin–Triebel spaces (Russian). Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 159 (1987), 103–112.

    Google Scholar 

  107. Netrusov, Ju.V., Metric estimates of the capacities of sets in Besov spaces (Russian). Trudy Mat. Inst. Steklov 190 (1989), 159–185.

    Google Scholar 

  108. Nikol’skij, S.M., Inequalities for entire functions of finite order and their application in the theory of differentiable functions of several variables (Russian). Trudy Mat. Inst. Steklov 38 (1951), 244–278.

    Google Scholar 

  109. Nikol’skij, S.M., Approximation of Functions of Several Variables and Imbedding Theorems (Russian). Sec. ed., Moskva, Nauka 1977. English translation of the first ed., Berlin, Springer 1975.

    Google Scholar 

  110. Nikolsky, S.M., Lions, J.L., and Lisorkin, P.I., Integral representation and isomorphism properties of some classes of functions, Ann. Scuola Norm. Sup. Pisa 19 (1965), 127–178.

    Google Scholar 

  111. Ovchinnikov, V.I., The method of orbits in interpolation theory. Math. Reports 1,2 (1984), 349–516.

    Google Scholar 

  112. Päivärinta, L., On the spaces \(L_p^A (l_q )\): Maximal inequalities and complex interpolation. Ann. Acad. Sci. Fenn. Ser. AI Math. Dissertationes 25, Helsinki 1980.

    Google Scholar 

  113. Päivärinta, L., Equivalent quasi-norms and Fourier multipliers in the Triebel spaces \(F_{p,q}^s \). Math. Nachr. 106 (1982), 101–108.

    Google Scholar 

  114. Peetre, J., Sur les espaces de Besov. C.R. Acad. Sci. Paris, Sér. A-B 264 (1967), 281–283.

    Google Scholar 

  115. Peetre, J., On the theory of \({\mathcal{L}}_{p,\lambda } \) spaces. J. Funct. Anal. 4 (1969), 71–87.

    Google Scholar 

  116. Peetre, J., Remarques sur les espaces de Besov. Le cas 0 < p < 1. C.R. Acad. Sci. Paris, Sér. A-B 277 (1973), 947–950.

    Google Scholar 

  117. Peetre, J., H p spaces. Lect. Notes, Lund 1974.

    Google Scholar 

  118. Peetre, J., On spaces of Triebel–Lizorkin type. Ark. Mat. 13 (1975), 123–130.

    Google Scholar 

  119. Peetre, J., New Thoughts on Besov Spaces. Duke Univ. Math. Series. Durham, Univ. 1976.

    Google Scholar 

  120. Pesenson, J.Z., On interpolation spaces on Lie groups (Russian). Dokl. Akad. Nauk SSSR 246 (1979), 1298–1303.

    Google Scholar 

  121. Pesenson, J.Z., Nikol’skij–Besov spaces connected with representations of Lie groups (Russian). Dokl. Akad. Nauk SSSR 273 (1983), 45–49.

    Google Scholar 

  122. Pesenson, J.Z., On the abstract theory of Nikol’skij–Besov spaces (Russian). Izv. Vysˇs. Učebn. Zaved. Matematika 6 (1988), 59–68.

    Google Scholar 

  123. Pesenson, J.Z., On best approximations in spaces of Lie group representations (Russian). Dokl. Akad. Nauk SSSR 302 (1988), 1055–1058.

    Google Scholar 

  124. Riesz, F., Über die Randwerte einer analytischen Funktion. Math. Z. 18 (1923), 87–95.

    Google Scholar 

  125. Ricci, F. and Taibleson, M., Boundary values of harmonic functions in mixed norm spaces and their atomic structure. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 10 (1983), 1–54.

    Google Scholar 

  126. Robinson, D.W., Lie groups and Lipschitz spaces. Duke Math. J. 57 (1988), 357–395.

    Google Scholar 

  127. Robinson, D.W., Lie algebras, the heat semigroups, and Lipschitz spaces. Res. Report 38, 1987, Dep. Math., Australian Nat. Univ.

    Google Scholar 

  128. Runst, T., Solvability of semilinear elliptic boundary value problems in Besov–Triebel–Lizorkin spaces. In: “Surveys on Analysis, Geometry and Mathematical Physics,” Teubner-Texte Math. 117. Leipzig, Teubner 1990, 198–291.

    Google Scholar 

  129. Rochberg, R., Tabacco Vignati, A., Vignati, M. and Weiss, G., Interpolation of quasinormed spaces by the complex method. In: “Function Spaces and Applications,” Proc. Conf. Lund 1986, Lect. Notes Math. 1302. Berlin, Springer 1988, 91–98.

    Google Scholar 

  130. Sands, S.E., A representation theorem for temperatures on mixed norm spaces. PhD. Thesis, Univ. of Maryland, 1981.

    Google Scholar 

  131. Schmeisser, H.-J. and Triebel, H., Topics in Fourier Analysis and Function Spaces. Leipzig, Geest & Portig 1987, Chichester, Wiley 1987.

    Google Scholar 

  132. Seeger, A., A note on Triebel–Lizorkin spaces. In: “Approximation and Function Spaces,” Banach Centre Publ. 22, Warsaw, PWN Polish Sci. Publ. 1989, 391–400.

    Google Scholar 

  133. Seeger, A., Remarks on singular convolution operators. Studia Math. 97 (1990), 91–114.

    Google Scholar 

  134. Slobodeckij, L.N., Generalized Sobolev spaces and their applications to boundary value problems of partial differential equations (Russian). Leningrad. Gos. Ped. Inst. Učep. Zap. 197 (1958), 54–112.

    Google Scholar 

  135. Sobolev, S.L., The Cauchy problem in a function space (Russian). Dokl. Akad. Nauk SSSR 3 (1935), 291–294.

    Google Scholar 

  136. Sobolev, S.L., Méthode nouvelle à resoudre le problème de Cauchy pour les équations linéaires hyperboliques normales. Mat. Sb. 1 (1936), 39–72.

    Google Scholar 

  137. Sobolev, S.L., On a theorem of functional analysis (Russian). Mat. Sb. 4 (1938), 471–497.

    Google Scholar 

  138. Sobolev, S.L., Einige Anwendungen der Funktionalanalysis auf Gleichungen der mathematischen Physik. Berlin, Akademie Verlag 1964. (Translation from Russian, Leningrad 1950).

    Google Scholar 

  139. Spanne, S., Sur l’interpolation entre les espaces \({\mathcal{L}}_k^{p\Phi } \). Ann. Scuola Norm. Pisa 20 (1966), 625–648.

    Google Scholar 

  140. Stampacchia, G., \({\mathcal{L}}^{(p,\lambda )} \)-spaces and interpolation. Comm. Pure Appl. Math. 17 (1964), 293–306.

    Google Scholar 

  141. Stampacchia, G., The spaces \({\mathcal{L}}^{(p,\lambda )} \), \(N^{(p,\lambda )} \) and interpolation. Ann. Scuola Norm. Sup. Pisa 19 (1965), 443–462.

    Google Scholar 

  142. Stein, E.M., Singular Integrals and Differentiability Properties of Functions. Princeton, Univ. Press 1970.

    Google Scholar 

  143. Stein, E.M., Topics in Harmonic Analysis, Related to the Littlewood–Paley Theory. Princeton, Univ. Press 1970.

    Google Scholar 

  144. Strichartz, R.S., Multipliers on fractional Sobolev spaces, J. Math. Mechanics 16 (1967), 1031–1060.

    Google Scholar 

  145. Strichartz, R.S., Analysis of the Laplacian on the complete Riemannian manifold. J. Funct. Anal. 52 (1983), 48–79.

    Google Scholar 

  146. Stein, E.M. and Weiss, G., On the theory of harmonic functions of several variables, I. The theory of H p spaces. Acta Math. 103 (1960), 25–62.

    Google Scholar 

  147. Stein, E.M. and Weiss, G., Introduction to Fourier Analysis on Euclidean Spaces. Princeton, Univ. Press, 1971.

    Google Scholar 

  148. Taibleson, M.H., On the theory of Lipschitz spaces of distributions on Euclidean n-space, I,II. J. Math. Mech. 13 (1964), 407–479, 14 (1965), 821–839.

    Google Scholar 

  149. Taibleson, M.H. and Weiss, G., The molecular characterization of certain Hardy spaces. Astérisque 77 (1980), 67–149.

    Google Scholar 

  150. Triebel, H., Interpolation Theory, Function Spaces, Differential Operators. Berlin, VEB Deutsch. Verl. Wissenschaften 1978, Amsterdam, North-Holland 1978.

    Google Scholar 

  151. Triebel, H., Theory of Function Spaces. Leipzig, Geest & Portig 1983, Basel, Birkhäuser 1983.

    Google Scholar 

  152. Triebel, H., Über die Existenz von Schauderbasen in Sobolev–Besov–Räumen. Isomorphiebeziehungen, Studia Math. 46 (1973), 83–100.

    Google Scholar 

  153. Triebel, H., Spaces of distributions of Besov type on Euclidean n-space. Duality, interpolation. Ark. Mat. 11 (1973), 13–64.

    Google Scholar 

  154. Triebel, H., A remark on embedding theorems for Banach spaces of distributions. Ark. Mat. 11 (1973), 65–74.

    Google Scholar 

  155. Triebel, H., Fourier Analysis and Function Spaces. Teubner-Texte Math. 7 Leipzig, Teubner 1977.

    Google Scholar 

  156. Triebel, H., Spaces of Besov–Hardy–Sobolev Type. Teubner-Texte Math. 15, Leipzig, Teubner 1978.

    Google Scholar 

  157. Triebel, H., On spaces of \(B_{\infty ,q}^s \) type and C s type. Math. Nachr. 85 (1978), 75–90.

    Google Scholar 

  158. Triebel, H., Theorems of Littlewood–Paley type for BMO and for anisotropic Hardy spaces. In: “Constructive Function Theory ‘77,” Proc. Sofia, Bulg. Acad. Publ. House 1980, 525–532.

    Google Scholar 

  159. Triebel, H., On L p (l q )-spaces of entire analytic functions of exponential type: Complex interpolation and Fourier multipliers. The case 0 < p < , 0 < q < . J. Approximation Theory 28 (1980), 317–328.

    Google Scholar 

  160. Triebel, H., Complex interpolation and Fourier multipliers for the spaces \(B_{p,q}^s \) and \(F_{p,q}^s \) of Besov–Hardy–Sobolev type: The case 0 < p, 0 < q. Math. Z. 176 (1981), 495–510.

    Google Scholar 

  161. Triebel, H., Characterizations of Besov–Hardy–Sobolev spaces via harmonic functions, temperatures and related means. J. Approximation Theory 35 (1982), 275–297.

    Google Scholar 

  162. Triebel, H., Spaces of Besov–Hardy–Sobolev type on complete Riemannian manifolds. Ark. Mat. 24 (1986), 299–337.

    Google Scholar 

  163. Triebel, H., Characterizations of function spaces on a complete Riemannian manifold with bounded geometry. Math. Nach. 130 (1987), 312–346.

    Google Scholar 

  164. Triebel, H., Function spaces on Lie groups, the Riemannian approach. J. London Math. Soc. 35 (1987), 327–338.

    Google Scholar 

  165. Triebel, H., Characterizations of Besov–Hardy–Sobolev spaces: a unified approach. J. Approximation Theory 52 (1988), 162–203.

    Google Scholar 

  166. Triebel, H., Function spaces on Lie groups and on analytic manifolds. In: “Function Spaces and Applications,” Proc. Conf. Lund 1986, Lect. Notes Math. 1302. Berlin, Springer 1988, 384–396.

    Google Scholar 

  167. Triebel, H., Diffeomorphism properties and pointwise multipliers for function spaces. In “Function Spaces,” Proc. Conf. Pozna´n 1986. Teubner-Texte Math. 103. Leipzig, Teubner 1988, 75–84.

    Google Scholar 

  168. Triebel, H., Atomic representations of \(F_{pq}^s \) spaces and Fourier integral operators. In: “Seminar Analysis Karl–Weierstrass Institute 1986/87,” Teubner-Texte Math. 106. Leipzig, Teubner 1988, 297–305.

    Google Scholar 

  169. Triebel, H., How to measure smoothness of distributions on Riemannian symmetric manifolds and Lie groups? Z. Analysis Anwendungen 7 (1988), 471–480.

    Google Scholar 

  170. Triebel, H., Inequalities in the theory of function spaces: A tribute to Hardy, Littlewood and Polya. In: “Inequalities,” Proc. Conf. Birmingham

    Google Scholar 

  171. Triebel, H., Atomic decompositions of \(F_{pq}^s \) spaces. Applications to exotic pseudodifferential and Fourier integral operators. Math. Nachr. 144 (1989), 189–222.

    Google Scholar 

  172. Triebel, H., Local approximation spaces. Z. Analysis Anwendungen 8 (1989), 261–288.

    Google Scholar 

  173. Vignati, A., Tabacco. Complex interpolation for families of quasi-Banach spaces. Indiana Univ. Math. J. 37 (1988), 1–21.

    Google Scholar 

  174. Wallin, H., New and old function spaces. In: “Function Spaces and Applications,” Proc. Conf. Lund 1986. Lect. Notes Math. 1302. Berlin, Springer 1988, 97–114.

    Google Scholar 

  175. Wiener, N., The ergodic theorem. Duke Math. J. 5 (1939), 1–18.

    Google Scholar 

  176. Wilson, J.M., On the atomic decomposition for Hardy spaces. Pacific J. Math. 116 (1985), 201–207.

    Google Scholar 

  177. Yosida, K., Functional Analysis. Berlin, Springer 1965.

    Google Scholar 

  178. Zygmund, A., Smooth functions. Duke Math. J. 12 (1945), 47–76.

    Google Scholar 

  179. Zygmund, A., Trigonometric Series, I,II. Cambridge Univ. Press 1977 (First ed., Warsaw 1935).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Triebel .

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Birkhäuser Basel

About this chapter

Cite this chapter

Triebel, H. (1992). How To Measure Smoothness. In: Theory of Function Spaces II. Modern Birkhäuser Classics. Springer, Basel. https://doi.org/10.1007/978-3-0346-0419-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0346-0419-2_1

  • Published:

  • Publisher Name: Springer, Basel

  • Print ISBN: 978-3-0346-0418-5

  • Online ISBN: 978-3-0346-0419-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics