Skip to main content

Periodic Function Spaces

  • Chapter
  • First Online:
Theory of Function Spaces

Part of the book series: Modern Birkhäuser Classics ((MBC))

Abstract

Let T n be the n-torus. As usual, we represent T n in R n by the cube

$$T_n = \{ x|x \in R_n ,x = (x_1 ,...,x_n ),|x_j | \le \pi \,{\rm{with}}\,j = 1,...,n\} ,$$

where opposite points are identified. More precisely,xT n and yT n are identified if and only if xy=2πk,where k=(k 1,⃛,k n ( is a vector with the integer-valued components k 1,⃛,k n .We denote the lattice of such ve·ctors k with integer-valued components by Z n .The problem is to introduce and to study spaces of type \(B_{p,q}^8 \) and \(B_{p,q}^8 \) on T n .One can try to develop such a theory parallel to Chapter 2, where the Euclidean n-space R n is replaced by the n-torus T n .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

  1. Leindler, L. On the strong summability and approximation of Fourier series. Banach Center Publications 4, “Approximation Theory”, Warsaw 1979, 143–157.

    Google Scholar 

  2. Leindler, L. Strong approximation of Fourier series and structural properties of functions. Acta Math. Acad. Sci. Hungar. 33 (1979), 105–125.

    Article  Google Scholar 

  3. Lizorkin, P. I. On bases and multipliers for the spaces \(B_{p,\Theta}^{r}(\Pi)\). (Russian) Trudy Mat. Inst. Steklov 143 (1977), 88–104.

    Google Scholar 

  4. Nikol’skij, S. M. Approximation of Functions of Several Variables and Imbedding Theorems. Second ed. (Russian). Moskva: Nauka 1977. (English translation of the first edition: Berlin, Heidelberg, New York: Springer-Verlag 1975).

    Google Scholar 

  5. Oswald, P. Besov-Hardy-Sobolev-Räume für analytische Funktionen im Einheitskreis.

    Google Scholar 

  6. Schmeißer, H.-J.; Sickel, W. On strong summability of multiple Fourier series and smoothness properties of functions. Anal. Math. 8 (1982), 57–70.

    Article  Google Scholar 

  7. Storoženko, Ė. A. Approximation of functions of class Hp, 0 < p ≦ 1. (Russian) Mat. Sb. 105 (1978), 601–621.

    Google Scholar 

  8. Storoženko, Ė. A. On theorems of Jackson type for Hp, 0 < p < 1. Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), 948–962.

    Google Scholar 

  9. Triebel, H. Periodic spaces of Besov-Hardy-Sobolev type and related maximal inequalities. Proc. Intern. Conf. “Functions, Series, Operators”, Budapest 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Triebel .

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Birkhäuser Basel

About this chapter

Cite this chapter

Triebel, H. (1983). Periodic Function Spaces. In: Theory of Function Spaces. Modern Birkhäuser Classics. Springer, Basel. https://doi.org/10.1007/978-3-0346-0416-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-0346-0416-1_9

  • Published:

  • Publisher Name: Springer, Basel

  • Print ISBN: 978-3-0346-0415-4

  • Online ISBN: 978-3-0346-0416-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics