Advertisement

Toeplitz Operators

  • Sheldon Axler
Part of the Operator Theory Advances and Applications book series (OT, volume 207)

Abstract

This article discusses Paul Halmos’s crucial work on Toeplitz operators and the consequences of that work.

Mathematics Subject Classification (2000)

47B35 

Keywords

Toeplitz operator Paul Halmos 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Alexandra Alemán and Dragan Vukotić, Zero products of Toeplitz operators, Duke Math. J. 148 (2009), 373–403.CrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    Sheldon Axler, Factorization of L∞ functions, Ann. Math. 106 (1977), 567–572.CrossRefMathSciNetGoogle Scholar
  3. [3]
    Sheldon Axler, Sun-Yung A. Chang, and Donald Sarason, Products of Toeplitz operators, Integral Equations Operator Theory 1 1978, 285–309.CrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    José Barría and P.R. Halmos, Asymptotic Toeplitz operators, Trans. Am. Math. Soc. 273 (1982), 621–630.CrossRefzbMATHGoogle Scholar
  5. [5]
    Arlen Brown and P.R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1964), 89–102.MathSciNetGoogle Scholar
  6. [6]
    Carl C. Cowen and John J. Long, Some subnormal Toeplitz operators, J. Reine Angew. Math. 351 (1984), 216–220.zbMATHMathSciNetGoogle Scholar
  7. [7]
    Ronald G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, 1972; second edition published by Springer, 1998.Google Scholar
  8. [8]
    Caixing Gu, Products of several Toeplitz operators, J. Funct. Anal. 171 (2000), 483–527.CrossRefzbMATHMathSciNetGoogle Scholar
  9. [9]
    Kun Yu Guo, A problem on products of Toeplitz operators, Proc. Amer. Math. Soc. 124 (1996), 869–871.CrossRefzbMATHMathSciNetGoogle Scholar
  10. [10]
    P.R. Halmos, A glimpse into Hilbert space, Lectures on Modern Mathematics, Vol. I, edited by T.L. Saaty, Wiley, 1963, 1–22.Google Scholar
  11. [11]
    P.R. Halmos, A Hilbert Space Problem Book, Van Nostrand, 1967; second edition published by Springer, 1982.Google Scholar
  12. [12]
    P.R. Halmos, I Want to Be a Mathematician, Springer, 1985.Google Scholar
  13. [13]
    P.R. Halmos, Quadratic interpolation, J. Operator Theory 7 (1982), 303–305.zbMATHMathSciNetGoogle Scholar
  14. [14]
    P.R. Halmos, Ten problems in Hilbert space, Bull. Am. Math. Soc. 76 (1970), 887–993.CrossRefzbMATHMathSciNetGoogle Scholar
  15. [15]
    P.R. Halmos, Ten years in Hilbert space, Integral Equations Operator Theory 2 (1979), 529–564.CrossRefzbMATHMathSciNetGoogle Scholar
  16. [16]
    Philip Hartman and Aurel Wintner, The spectra of Toeplitz’s matrices, Amer. J. Math. 76 (1954), 867–882.CrossRefzbMATHMathSciNetGoogle Scholar
  17. [17]
    Elias M. Stein, Interpolation of linear operators, Trans. Am. Math. Soc. 83 (1956), 482–492.CrossRefzbMATHGoogle Scholar
  18. [18]
    A.L. Volberg, Two remarks concerning the theorem of S. Axler, S.-Y.A. Chang and D. Sarason, J. Operator Theory 7 (1982), 209–218.zbMATHMathSciNetGoogle Scholar
  19. [19]
    Harold Widom, On the spectrum of a Toeplitz operator, Pacific J. Math. 14 (1964), 365–375.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Sheldon Axler
    • 1
  1. 1.Mathematics DepartmentSan Francisco State UniversitySan FranciscoUSA

Personalised recommendations