A Halmos Doctrine and Shifts on Hilbert Space

  • Paul S. Muhly
Part of the Operator Theory Advances and Applications book series (OT, volume 207)


This a survey of some recent work on noncommutative function theory related to tensor algebras that derives in part from Paul Halmos’s paper, Shifts on Hilbert space.

Mathematics Subject Classification (2000)

46E22 46E50 46G20 46H15 46H25 46K50 46L08 46L89 


Shifts on Hilbert space tensor algebra matricial function theory fully matricial set C*-correspondence operator algebra 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Agler and J. McCarthy, Pick Interpolation and Hilbert Function Spaces, Graduate Studies in Mathematics, vol. 44, Amer. Math. Soc., Providence (2002).Google Scholar
  2. [2]
    Wm.B. Arveson, Operator algebras and measure preserving automorphisms, Acta Mathematica 118 (1967), 95–109.CrossRefMathSciNetzbMATHGoogle Scholar
  3. [3]
    Wm.B. Arveson, Subalgebras of C*-algebras, Acta Mathematica 123 (1969), 141–224.CrossRefMathSciNetzbMATHGoogle Scholar
  4. [4]
    Wm.B. Arveson, Subalgebras of C*-algebras, III, Acta Mathematica 181 (1998), 159–228.CrossRefMathSciNetzbMATHGoogle Scholar
  5. [5]
    Wm.B. Arveson, Noncommutative Dynamics and E-semigroups, Springer-Verlag, New York, 2003.zbMATHGoogle Scholar
  6. [6]
    M. Baillet, Y. Denizeau and J.-F. Havet, Indice d’une esperance conditionelle, Compositio Math. 66 (1988), 199–236.MathSciNetzbMATHGoogle Scholar
  7. [7]
    J. Ball, A. Biswas, Q. Fang and S. ter Horst, Multivariable generalizations of the Schur class: positive kernel characterization and transfer function realization, Operator Theory: Advances and Applications, 187 (2008), 17–79.CrossRefGoogle Scholar
  8. [8]
    S. Barreto, B. Bhat, V. Liebscher and M. Skeide, Type I product systems of Hilbert modules, J. Functional Anal 212 (2004), 121–181.CrossRefMathSciNetzbMATHGoogle Scholar
  9. [9]
    A. Beurling, On two problems concerning linear transformations on Hilbert space, Acta Math. 81 (1949), 239–255.CrossRefzbMATHGoogle Scholar
  10. [10]
    D. Blecher and C. Le Merdy, Operator algebras and their modules — an operator space approach, London Mathematical Society Monographs. New Series, 30, Oxford Science Publications. The Clarendon Press, Oxford University Press, Oford 2004. x+387 pp.Google Scholar
  11. [11]
    D. Blecher, Z.-J. Ruan, and A. Sinclair, A characterization of operator algebras, J. Functional Anal. 89 (1990), 188–201.CrossRefMathSciNetzbMATHGoogle Scholar
  12. [12]
    P.M. Cohn, Free Rings and Their Relations, Academic Press, New York, 1985.zbMATHGoogle Scholar
  13. [13]
    K. Davidson, J. Li and D. Pitts, Absolutely continuous representations and a Kaplansky density theorem for free semigroup algebras, J. Funct. Anal. 224 (2005), 160–191.MathSciNetzbMATHGoogle Scholar
  14. [14]
    K. Davidson and D. Pitts, The algebraic structure of non-commutative analytic Toeplitz algebras, Math. Ann. 311 (1998), 275–303.CrossRefMathSciNetzbMATHGoogle Scholar
  15. [15]
    K. Davidson and D. Pitts, Nevanlinna-Pick interpolation for non-commutative analytic Toeplitz algebras, Integral Equations Operator Theory 31 (1998), 321–337.CrossRefMathSciNetzbMATHGoogle Scholar
  16. [16]
    K. Davidson and D. Pitts, Invariant subspaces and hyper-reflexivity for free semigroup algebras, Proc. London Math. Soc. (3) 78 (1999), 401–430.Google Scholar
  17. [17]
    K. Davidson and D. Yang, A note on absolute continuity in free semigroup algebras, Houston J. Math. 34 (2008), 283–288.MathSciNetzbMATHGoogle Scholar
  18. [18]
    J. Dixmier, C*-algebras, North Holland, 1977.Google Scholar
  19. [19]
    R.G. Douglas and V. Paulsen, Hilbert Modules Over Function Algebras, Pitman Research Notes in Mathematics Series 217 John Wiley, 1989.Google Scholar
  20. [20]
    E.G. Effros and Z.-J. Ruan, Operator spaces, London Mathematical Society Monographs. New Series, 23. The Clarendon Press, Oxford University Press, New York, 2000.Google Scholar
  21. [21]
    N. Fowler, P. Muhly, and I. Raeburn, Representations of Cuntz-Pimsner algebras, Indiana U. Math. J., 52 (2002), 569–605.CrossRefMathSciNetGoogle Scholar
  22. [22]
    N. Fowler and I. Raeburn, The Toeplitz algebra of a Hilbert bimodule, Indiana U. Math. J., 48 (1999), 155–181.CrossRefMathSciNetzbMATHGoogle Scholar
  23. [23]
    P. Gabriel, Unzerlegbare Darstellungen I, Manuscripta Math. 6 (1972), 71–103.CrossRefMathSciNetzbMATHGoogle Scholar
  24. [24]
    P. Gabriel, Representations of Finite-Dimensional Algebras, Encyclopaedia of Mathematical Sciences, Vol. 73, Springer-Verlag, New York, 1992.Google Scholar
  25. [25]
    P.R. Halmos, Shifts on Hilbert spaces, J. Reine Angew. Math. 208 (1961), 102–112.CrossRefMathSciNetzbMATHGoogle Scholar
  26. [26]
    P.R. Halmos, A Hilbert Space Problem Book, D. Van Nostrand Col., Inc., Princeton, N.J. — Toronto, Ont.-London, 1967, xvii+365 (Second edition, Graduate Texts in Mathematics 19, Springer-Verlag, New York, 1982, xvii+369.)zbMATHGoogle Scholar
  27. [27]
    P.R. Halmos, How to write mathematics, Enseignement Math. (2) 16 (1970), 123–152.Google Scholar
  28. [28]
    M. Hamana, Injective envelopes of operator systems, Publ. Res. Inst. Math. Sci. 15 (1979), 773–785.CrossRefMathSciNetzbMATHGoogle Scholar
  29. [29]
    J.W. Helton, I. Klep, S. McCullough, and N. Slinglend, Noncommutative ball maps, J. Funct. Anal. 257 (2009), 47–87.CrossRefMathSciNetzbMATHGoogle Scholar
  30. [30]
    G. Hochschild, On the structure of algebras with nonzero radical, Bull. Amer. Math. Soc. 53(1947), 369–377.CrossRefMathSciNetzbMATHGoogle Scholar
  31. [31]
    R.V. Kadison and I. Singer, Triangular operator algebras. Fundamentals and hyperreducible theory, Amer. J. Math. 82 (1960), 227–259.CrossRefMathSciNetzbMATHGoogle Scholar
  32. [32]
    T. Katsura, On C*-algebras associated with C*-correspondences, J. Funct. Anal. 217 (2004), 366–401.CrossRefMathSciNetzbMATHGoogle Scholar
  33. [33]
    E. Katsoulis and D. Kribs, Tensor algebras of C*-correspondences and their C*-envelopes, J. Funct. Anal. 234 (2006), 226–233.CrossRefMathSciNetzbMATHGoogle Scholar
  34. [34]
    E.C. Lance, Hilbert C*-modules, London Math. Soc. Lect. Note Series 210, Cambridge Univ. Press, Cambridge, 1995.CrossRefGoogle Scholar
  35. [35]
    P. Lax, Translation invariant spaces, Acta Math. 101 (1959), 163–178.CrossRefMathSciNetzbMATHGoogle Scholar
  36. [36]
    A. Marrero and P. Muhly, Cuntz-Pimnser algebras, completely positive maps and Morita equivalence Proc. Amer. Math. Soc. 134 (2006), 1133–1135.CrossRefMathSciNetzbMATHGoogle Scholar
  37. [37]
    M. McAsey, P. Muhly and K.-S. Saito, Nonselfadjoint crossed products (invariant subspaces and maximality), Trans. Amer. Math. Soc. 248 (1979), 381–409.CrossRefMathSciNetGoogle Scholar
  38. [38]
    M. McAsey, P. Muhly and K.-S. Saito, Nonself adjoint crossed products. II, J. Math. Soc. Japan 33 (1981), 485–495.CrossRefMathSciNetzbMATHGoogle Scholar
  39. [39]
    P. Muhly, A finite-dimensional introduction to operator algebra, in Operator Algebras and Applications, A. Katavolos, ed., NATO ASI Series Vol. 495, Kluwer, Dordrecht, 1997, pp. 313–354.Google Scholar
  40. [40]
    P. Muhly and B. Solel, Tensor algebras over C*-correspondences (Representations, dilations, and C*-envelopes), J. Functional Anal. 158 (1998), 389–457.CrossRefMathSciNetzbMATHGoogle Scholar
  41. [41]
    P. Muhly and B. Solel, Tensor algebras, induced representations, and the Wold decomposition, Canadian J. Math. 51 (1999), 850–880.CrossRefMathSciNetzbMATHGoogle Scholar
  42. [42]
    P. Muhly and B. Solel, Quantum Markov Processes (Correspondences and Dilations), Int. J. Math. 13 (2002), 863–906.CrossRefMathSciNetzbMATHGoogle Scholar
  43. [43]
    P. Muhly and B. Solel, The curvature and index of completely positive maps, Proc. London Math. Soc. (3) 87 (2003), 748–778.Google Scholar
  44. [44]
    P. Muhly and B. Solel, Hardy algebras, W*-correspondences and interpolation theory, Math. Annalen 330 (2004), 353–415.CrossRefMathSciNetzbMATHGoogle Scholar
  45. [45]
    P. Muhly and B. Solel, Extensions and Dilations for C*-dynamical systems, in Operator Theory, Operator Algebras and Applications, Contemporary Mathematics 414, Amer. Math. Soc. 2006, 375–382.MathSciNetGoogle Scholar
  46. [46]
    P. Muhly and B. Solel, Schur Class Operator Functions and Automorphisms of Hardy Algebras, Documenta Math. 13 (2008), 365–411.MathSciNetzbMATHGoogle Scholar
  47. [47]
    F. Murray and J. von Neumann, Rings of operators, Ann. of Math. (2) 37 (1936), 116–229.Google Scholar
  48. [48]
    C. Nesbitt and W. Scott, Matrix algebras over algebraically closed fields, Ann. Math. (2) 44 (1943), 147–160.Google Scholar
  49. [49]
    W. Paschke, Inner product modules over C*-algebras, Trans. Amer. Math. Soc. 182 (1973), 443–468.MathSciNetzbMATHGoogle Scholar
  50. [50]
    V. Paulsen, Completely bounded maps and operator algebras, Cambridge Studies in Advanced Mathematics, 78, Cambridge University Press, Cambridge, 2002. xii + 300 pp.Google Scholar
  51. [51]
    J. Peters, Semi-crossed products of C*-algebras, J. Funct. Anal. 59 (1984), 498–534.CrossRefMathSciNetzbMATHGoogle Scholar
  52. [52]
    M. Pimsner, A class of C*-algebras generalizing both Cuntz-Krieger algebras and crossed products by ℤ, in Free Probability Theory, D. Voiculescu, Ed., Fields Institute Communications 12, 189–212, Amer. Math. Soc, Providence, 1997.Google Scholar
  53. [53]
    G. Pisier, Introduction to operator space theory, London Mathematical Society Lecture Note Series, 294, Cambridge University Press, Cambridge, 2003. viii+478 pp.Google Scholar
  54. [54]
    G. Popescu, Isometric dilations for infinite sequences of noncommuting operators, Trans. Amer. Math. Soc. 316 (1989), 523–536.CrossRefMathSciNetzbMATHGoogle Scholar
  55. [55]
    G. Popescu, Characteristic functions for infinite sequences of noncommuting operators, J. Operator Theory 22 (1989), 51–71.MathSciNetzbMATHGoogle Scholar
  56. [56]
    G. Popescu, von Neumann inequality for (B(H) n)1, Math. Scand. 68 (1991), 292–304.MathSciNetzbMATHGoogle Scholar
  57. [57]
    G. Popescu, Multi-analytic operators on Fock spaces, Math. Ann. 303 (1995), 31–46.CrossRefMathSciNetzbMATHGoogle Scholar
  58. [58]
    G. Popescu, Operator theory on noncommutative varieties, Indiana Univ. Math. J. 55, 2006, 389–442.CrossRefMathSciNetzbMATHGoogle Scholar
  59. [59]
    G. Popescu, Free holomorphic functions on the unit ball of B(H) n, J. Funct. Anal. 241 (2006), 268–333.CrossRefMathSciNetzbMATHGoogle Scholar
  60. [60]
    G. Popescu, Operator theory on noncommutative domains, preprint (arXiv:math/0703062).Google Scholar
  61. [61]
    M. Rieffel, Induced representations of C*-algebras, Advances in Math. 13 (1974), 176–257.CrossRefMathSciNetzbMATHGoogle Scholar
  62. [62]
    S. Sakai, A characterization of W*-algebras, Pacific J. Math. 6 (1956), 763–773.MathSciNetzbMATHGoogle Scholar
  63. [63]
    J.J. Schäffer, On unitary dilations of contractions, Proc. Amer. Math. Soc. 6 (1955), 322.CrossRefMathSciNetGoogle Scholar
  64. [64]
    W.F. Stinespring, Positive functions on C*-algebras, Proc. Amer. Math. Soc. 6 (1955), 211–216.MathSciNetzbMATHGoogle Scholar
  65. [65]
    B. Sz.-Nagy, Sur les contractions de l’espace de Hilbert, Acta Sci. Math. 15 (1953), 87–92.MathSciNetzbMATHGoogle Scholar
  66. [66]
    B. Sz.-Nagy and C. Foias, Sur les contractions de l’espace de Hilbert. V. Translations bilatérales. Acta Sci. Math. (Szeged) 23 (1962), 106–129.MathSciNetGoogle Scholar
  67. [67]
    B. Sz.-Nagy and C. Foias, Harmonie Analysis of Operators on Hilbert Space, Elsevier, 1970.Google Scholar
  68. [68]
    J.L. Taylor, A general framework for a multi-operator functional calculus, Advances in Math. 9 (1972), 183–252.CrossRefMathSciNetzbMATHGoogle Scholar
  69. [69]
    D. Voiculescu, Free Analysis Questions I: Duality Transform for the Coalgebra ofX:B, Int. Math. Res. Not. 2004, no. 16, 793–822.Google Scholar
  70. [70]
    D. Voiculescu, Free Analysis Questions II: The Grassmannian completion and the series expansions at the origin, preprint arXiv: 0806.0361.Google Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Paul S. Muhly
    • 1
  1. 1.Department of MathematicsUniversity of IowaIowa CityUSA

Personalised recommendations