Skip to main content

Cohomological Degrees of Graded Modules

  • Chapter
Six Lectures on Commutative Algebra

Part of the book series: Progress in Mathematics ((MBC))

Abstract

By a degree of a module M we mean a numerical measure of information carried by M. It must serve the purposes of allowing comparisons between modules and to exhibit flexible calculus rules that track the degree under some basic constructions in module theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Almkvist, K-theory of endomorphisms, J. Algebra 55 (1978), 308–340; Erratum, J. Algebra 68 (1981), 520–521.

    Google Scholar 

  2. D. Bayer and D. Mumford, What can be computed in Algebraic Geometry?, in Computational Algebraic Geometry and Commutative Algebra, Proceedings, Cortona 1991 ( D. Eisenbud and L. Robbiano, Eds. ), Cambridge University Press, 1993, 1–48.

    Google Scholar 

  3. D. Bayer and M. Stillman, Macaulay: A system for computation in algebraic geometry and commutative algebra, 1992. Available via anonymous ftp from math.harvard.edu.

    Google Scholar 

  4. J. Becker, On the boundedness and unboundedness of the number of generators of ideals and multiplicity, J. Algebra 48 (1977), 447–453.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Boratynski, D. Eisenbud and D. Rees, On the number of generators of ideals in local Cohen-Macaulay rings, J. Algebra 57 (1979), 77–81.

    Article  MathSciNet  MATH  Google Scholar 

  6. W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, Cambridge, 1993.

    MATH  Google Scholar 

  7. A. Capani, G. Niesi and L. Robbiano, CoCoA: A system for doing computations in commutative algebra, 1995. Available via anonymous ftp from lancelot.dima.unige.it.

    Google Scholar 

  8. L. R. Doering, Multiplicities, Cohomological Degrees and Generalized Hilbert Functions, Ph.D. Thesis, 1997, Rutgers University.

    Google Scholar 

  9. L. R. Doering, T. Gunston and W. V. Vasconcelos, Cohomological degrees and Hilbert functions of graded modules, Preprint, 1996.

    Google Scholar 

  10. P. Eakin and A. Sathaye, Prestable ideals, J. Algebra 41 (1976), 439–454.

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Eisenbud, Commutative Algebra with a view toward Algebraic Geometry, Springer-Verlag, Berlin-Heidelberg-New York, 1995.

    MATH  Google Scholar 

  12. D. Eisenbud and S. Goto, Linear free resolutions and minimal multiplicities, J. Algebra 88 (1984), 89–133.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Grothendieck, Local Cohomology, Lecture Notes in Mathematics 41, Springer-Verlag, Berlin-Heidelberg-New York, 1967.

    Google Scholar 

  14. T. H. Gulliksen, On the length of faithful modules over Artinian local rings, Math. Scand. 31 (1972), 78–82.

    MathSciNet  MATH  Google Scholar 

  15. T. Gunston, Ph.D. Thesis in Progress, Rutgers University.

    Google Scholar 

  16. R. Hartshorne, Connectedness of the Hilbert scheme, Publications Math. I.H.E.S. 29 (1966), 261–304.

    Google Scholar 

  17. J. Herzog and E. Kunz, Der kanonische Modul eines Cohen-Macaulay Rings, Lecture Notes in Mathematics 238, Springer-Verlag, Berlin-Heidelberg-New York, 1971.

    Google Scholar 

  18. L. T. Hoa, Reduction numbers of equimultiple ideals, J. Pure ê9 Applied Algebra 109 (1996), 111–126.

    Article  MATH  Google Scholar 

  19. C. Huneke and B. Ulrich, General hyperplane sections of algebraic varieties, J. Algebraic Geometry 2 (1993), 487–505.

    MathSciNet  MATH  Google Scholar 

  20. D. Kirby and D. Rees, Multiplicities in graded rings I: The general theory, Contemporary Math. 159 (1994), 209–267.

    Article  MathSciNet  Google Scholar 

  21. C. Lech, Note on multiplicities of ideals, Arkiv far Matematik 4, (1960), 63–86.

    Article  MathSciNet  MATH  Google Scholar 

  22. F. S. Macaulay, The Algebraic Theory of Modular Systems, Cambridge University Press, Cambridge, 1916.

    MATH  Google Scholar 

  23. F. S. Macaulay, Some properties of enumeration in the theory of modular systems, Proc. London Math. Soc. 26 (1927), 531–555.

    Article  MathSciNet  MATH  Google Scholar 

  24. H. Matsumura, Commutative Algebra, Benjamin/Cummings, Reading, 1980.

    MATH  Google Scholar 

  25. C. Miyazaki, K. Yanagawa and W. Vogel, Associated primes and arithmetic degree, J. Algebra, to appear.

    Google Scholar 

  26. M. Nagata, Local Rings, Interscience, New York, 1962.

    MATH  Google Scholar 

  27. J. D. Sally, Bounds for numbers of generators for Cohen-Macaulay ideals, Pacific J. Math. 63 (1976), 517–520.

    Article  MathSciNet  MATH  Google Scholar 

  28. J. D. Sally, Number of Generators of Ideals in Local Rings, Lecture Notes in Pure & Applied Math. 35, Marcel Dekker, New York, 1978.

    Google Scholar 

  29. I. Schur, Zur Theorie der vertauschbaren Matrizen, J. reine angew. Math. 130 (1905), 66–76.

    Google Scholar 

  30. A. Shalev, On the number of generators for ideals in local rings, Advances in Math. 59 (1986), 82–94.

    Article  MathSciNet  MATH  Google Scholar 

  31. R. P. Stanley, Hilbert functions of graded algebras, Advances in Math. 28 (1978), 57–83.

    Article  MathSciNet  MATH  Google Scholar 

  32. R. P. Stanley, On the Hilbert function of a graded Cohen-Macaulay domain, J. Pure e.4 Applied Algebra 73 (1991), 307–314.

    Article  MathSciNet  MATH  Google Scholar 

  33. J. StĂĽckrad and W. Vogel, Buchsbaum Rings and Applications, Springer-Verlag, Vienna-New York, 1986.

    Book  Google Scholar 

  34. B. Sturmfels, N. V. Trung and W. Vogel, Bounds on degrees of projective schemes, Math. Annalen 302 (1995), 417–432.

    Article  MathSciNet  MATH  Google Scholar 

  35. N. V. Trung, Reduction exponent and degree bound for the defining equations of graded rings, Proc. Amer. Math. Soc. 101 (1987), 229–236.

    Article  MathSciNet  MATH  Google Scholar 

  36. N. V. Trung, Bounds for the minimum number of generators of generalized Cohen—Macaulay ideals, J. Algebra 90 (1984), 1–9.

    Article  MathSciNet  MATH  Google Scholar 

  37. G. Valla, Generators of ideals and multiplicities, Comm. in Algebra 9 (1981), 1541–1549.

    Google Scholar 

  38. W. V. Vasconcelos, Arithmetic of Blowup Algebras, London Math. Soc., Lecture Note Series 195, Cambridge University Press, Cambridge, 1994.

    Google Scholar 

  39. W. V. Vasconcelos, The reduction number of an algebra, Compositio Math. 104 (1996), 189–197.

    MathSciNet  MATH  Google Scholar 

  40. W. V. Vasconcelos, The homological degree of a module, Trans. Amer. Math. Soc.,to appear.

    Google Scholar 

  41. W. V. Vasconcelos, Computational Methods in Commutative Algebra and Algebraic Geometry, Springer-Verlag, to appear in 1997.

    Google Scholar 

  42. C. Weibel, An Introduction to Homological Algebra, Cambridge University Press, Cambridge, 1994.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Basel AG

About this chapter

Cite this chapter

Vasconcelos, W.V. (1998). Cohomological Degrees of Graded Modules. In: Elias, J., Giral, J.M., Miró-Roig, R.M., Zarzuela, S. (eds) Six Lectures on Commutative Algebra. Progress in Mathematics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0346-0329-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-0346-0329-4_6

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0346-0328-7

  • Online ISBN: 978-3-0346-0329-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics