Skip to main content

Generic Initial Ideals

  • Chapter

Part of the book series: Progress in Mathematics ((MBC))

Abstract

A very powerful technique in commutative algebra was introduced by Macaulay, who realized that studying the initial terms of elements of an ideal gives one great insight into the algebra and combinatorics of the ideal. The initial ideal depends on the choice of coordinates, but there is an object, the initial ideal in generic coordinates, which is coordinate-independent. Generic initial ideals appeared in the work of Grauert and Hironaka.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Amasaki, “Preparatory structure theorem for ideals defining space curves,” Publ. RIMS 19 (1983), 493–518.

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Arbarello, M. Cornalba, P. Griffiths and J. Harris, Geometry of Algebraic Curves, V. 1, Springer-Verlag, New York, 1985.

    MATH  Google Scholar 

  3. A. Aramova, J. Herzog and T. Hibi, “Gotzmann theorems for exterior algebras and combinatorics,” preprint.

    Google Scholar 

  4. R. Bryant, S.S. Chern, R. Gardner, H. Goldschmidt, P. Griffiths, Exterior Differential Systems, Springer-Verlag, Boston, 1991.

    Book  MATH  Google Scholar 

  5. W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, Cambridge, 1993.

    MATH  Google Scholar 

  6. D. Bayer and M. Stillman, “A criterion for detecting m-regularity,” Invent. Math. 87 (1987), 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Cook, “The connectedness of space curve invariants,” preprint.

    Google Scholar 

  8. E. Davis, “O-dimensional subschemes of P2:lectures on Castelnuovo’s function,” Queen’s Papers in pure and appl. math. 76 (1986).

    Google Scholar 

  9. D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer-Verlag, New York 1995.

    MATH  Google Scholar 

  10. D. Eisenbud, M. Green, and J. Harris, “Some conjectures extending Castelnuovo theory,” in Astérisque 218 (1993), 187–202.

    MathSciNet  Google Scholar 

  11. S. Eliahou and M. Kervaire, “Minimal resolutions of some monomial ideals,” J. Alg. 129 (1990), 1–25.

    Article  MathSciNet  MATH  Google Scholar 

  12. Ph. Ellia and C. Peskine, “Groupes de points de P2: caractère et position uniforme,” 111–116 in Algebraic geometry (L’Aquila, 1988), Springer LNM 1417, Berlin, 1990.

    Google Scholar 

  13. G. Floystad, “Higher initial images of homogeneous ideals,” preprint.

    Google Scholar 

  14. M. Green, “Koszul cohomology and geometry,” 177–200 in Lectures on Riemann Surfaces (M. Cornalba, X. Gomez-Mont, A. Verjovsky eds.), World Scientific, Singapore, 1989.

    Google Scholar 

  15. M. Green, “Restrictions of linear series to hyperplanes, and some results of Macaulay and Gotzmann,” 76–88 in Algebraic Curves and Projective Geometry (E. Ballico and C. Ciliberto, eds.), Springer LNM 1389, Berlin 1989.

    Google Scholar 

  16. M. Green, “Infinitesimal methods in Hodge theory,” 1–92 in Algebraic Cycles and Hodge Theory (A. Albano and F. Bardelli, eds.), Springer LNM 1594, Berlin, 1994.

    Google Scholar 

  17. M. Green, “The Eisenbud-Koh-Stillman conjecture on linear syzygies,” preprint.

    Google Scholar 

  18. P. Griffiths, and J. Harris, Principles of Algebraic Geometry, Wiley Interscience, New York, 1978.

    MATH  Google Scholar 

  19. P. Griffiths and J. Harris, “Algebraic geometry and local differential geometry,” Ann. Sci. École Norm. Sup. 12 (1979), 355–452.

    MathSciNet  MATH  Google Scholar 

  20. L. Gruson, R. Lazarsfeld, and C. Peskine, “On a theorem of Castelnuovo, and the equations defining space curves,” Inv. Math. 72 (1983), 491–506.

    Article  MathSciNet  MATH  Google Scholar 

  21. L. Gruson and C. Peskine, “Genre des courbes de l’espace projectif,” 31–59 in Algebraic Geometry: Proc. Symposium University of Tromso, Tromso, 1977, Springer LNM 687, Berlin, 1978.

    Google Scholar 

  22. G. Gotzmann, “Eine Bedingung für die Flachheit und das Hilbertpolynom eines graduierten Ringes,” Math. Z. 158 (1978), 61–70.

    Article  MathSciNet  Google Scholar 

  23. R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977.

    Book  MATH  Google Scholar 

  24. C. Huneke and B. Ulrich, “General hyperplane sections of algebraic varieties,” J. Alg. Geom. 2 (1993), 487–505.

    MathSciNet  MATH  Google Scholar 

  25. J.M. Landsberg, “On the second fundamental forms of projective varieties,” Inv. Math. 117 (1994), 303–315.

    Article  MathSciNet  MATH  Google Scholar 

  26. J.M. Landsberg, “Differential-geometric characterizations of complete intersections,” preprint.

    Google Scholar 

  27. R. Liebling, “Classification of space curves using initial ideals,” Thesis, University of California at Berkeley, 1996.

    Google Scholar 

  28. H. Matsumura, Commutative Ring Theory, Cambridge University Press, Cambridge, 1986.

    MATH  Google Scholar 

  29. C. Rippel, “Generic initial ideal theory for coordinate rings of flag varieties,” Thesis (UCLA).

    Google Scholar 

  30. L. Robbiano, “Term orderings in the polynomial ring,” Proc. of Eurocal 1985, LNCS 203 II, Springer-Verlag, Berlin, 1985.

    Google Scholar 

  31. L. Robbiano, “On the theory of graded structures,” J. Symb. comp 2 (1986), 139–170.

    Article  MathSciNet  MATH  Google Scholar 

  32. J.-E. Roos, “A description of the homological behavior of families of quadratic forms in four variables,” in Iarrobino, Martsinkovsky, and Weyman, Syzygies and Geometry (1995), 86–95.

    Google Scholar 

  33. J.-P. Serre, “Faisceaux algébriques cohérents,” Ann. of Math. 61 (1955), 197–278.

    Google Scholar 

  34. R. Stanley, Combinatorics and Commutative Algebra, 2nd edition, Birkhäuser, Boston, 1996.

    MATH  Google Scholar 

  35. R. Strano, “A characterization of complete intersection curves in P3,” Proc. A.M.S. 104 (1988), no. 3, 711–715.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Basel AG

About this chapter

Cite this chapter

Green, M.L. (1998). Generic Initial Ideals. In: Elias, J., Giral, J.M., Miró-Roig, R.M., Zarzuela, S. (eds) Six Lectures on Commutative Algebra. Progress in Mathematics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0346-0329-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-0346-0329-4_2

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0346-0328-7

  • Online ISBN: 978-3-0346-0329-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics