Skip to main content

Resistance Boundaries of Infinite Networks

  • Conference paper
  • First Online:
Random Walks, Boundaries and Spectra

Part of the book series: Progress in Probability ((PRPR,volume 64))

Abstract

A resistance network is a connected graph (G, c). The conductance function \(c_{xy}\) weights the edges, which are then interpreted as conductors of possibly varying strengths. The Dirichlet energy form ε produces a Hilbert space structure h ε on the space of functions of finite energy.

The relationship between the natural Dirichlet form \( \rm{\varepsilon}\)and the discrete Laplace operator \( \rm{\Delta}\) on a finite network is given by \( {{\varepsilon(u,\,v)}}\, = \, {\langle{u},\,\Delta {v}\rangle}2, \) where the latter is the usual l 2 inner product. We describe a reproducing kernel v x for ε which allows one to extend the discrete Gauss-Green identity to infinite networks:

\( {{\varepsilon(u,\,v)}}\, = \, {\sum}_{G}\, {u\Delta v}+{\sum}_{bd\,\,G} \,\,{u}\,\frac{\partial {v}} {\partial {n}},\,\, \)

where the latter sum is understood in a limiting sense, analogous to a Riemann sum. This formula yields a boundary sum representation for the harmonic functions of finite energy.

Techniques from stochastic integration allow one to make the boundary bdG precise as a measure space, and give a boundary integral representation (in a sense analogous to that of Poisson or Martin boundary theory). This is done in terms of a Gel’fand triple \( {S}\,\, \subseteq \, \, {H_\varepsilon}\,\, \subseteq\,\,{{S}^\prime} {\rm{and}\, {gives}\, {a}\, {probability}\, {measure}\,\mathbb{P}}\, {\rm{and}\, {an}\, {isometric}\, {embedding}\,{of}\,{H_\varepsilon}\,\,{into}}\,\,{{S}^\prime},\,\mathbb{P},\) and yields a concrete representation of the boundary as a set of linear functionals on S.

Mathematics Subject Classification (2000). Primary: 05C50, 05C75, 31C20, 46E22, 47B25, 47B32, 60J10, Secondary: 31C35, 47B39, 82C41.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alano Ancona, Russell Lyons, and Yuval Peres, Crossing estimates and convergence of Dirichlet functions along random walk and diffusion paths, Ann. Probab. 27 (1999), no. 2, 970–989. MR1698991 (2000j:60089)

    Google Scholar 

  2. Christian Berg, Moment problems and polynomial approximation, Ann. Fac. Sci. Toulouse Math. 6 (1996), no. Special issue, 9–32, 100 ans apr`es Th.-J. Stieltjes. MR1462705 (98h:44002)

    Google Scholar 

  3. Christian Berg, Jens Peter Reus Christensen, and Paul Ressel, Harmonic analysis on semigroups, Graduate Texts in Mathematics, vol. 100, Springer-Verlag, New York, 1984, Theory of positive definite and related functions. MR747302 (86b:43001)

    Google Scholar 

  4. P. Cartier, Harmonic analysis on trees, Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI,Williams Coll., Williamstown, Mass., 1972), Amer. Math. Soc., Providence, R.I., 1973, pp. 419–424. MR0338272 (49 #3038)

    Google Scholar 

  5. Donald I. Cartwright and Wolfgang Woess, Infinite graphs with nonconstant Dirichlet finite harmonic functions, SIAM J. Discrete Math. 5 (1992), no. 3, 380–385. MR1172746 (94a:31005)

    Google Scholar 

  6. Manfred Denker and Hiroshi Sato, Sierpi´nski gasket as a Martin boundary. II. The intrinsic metric, Publ. Res. Inst. Math. Sci. 35 (1999), no. 5, 769–794. MR1739300 (2002f:60140)

    Google Scholar 

  7. , Sierpi´nski gasket as a Martin boundary. I. Martin kernels, Potential Anal. 14 (2001), no. 3, 211–232. MR1822915 (2002f:60139)

    Google Scholar 

  8. , Reflections on harmonic analysis of the Sierpi´nski gasket, Math. Nachr. 241 (2002), 32–55. MR1912376 (2003e:28016)

    Google Scholar 

  9. Reinhard Diestel, End spaces and spanning trees, J. Combin. Theory Ser. B 96 (2006), no. 6, 846–854. MR2274079 (2007j:05046)

    Google Scholar 

  10. J´ozef Dodziuk, Elliptic operators on infinite graphs, Analysis, geometry and topology of elliptic operators, World Sci. Publ., Hackensack, NJ, 2006, pp. 353–368. MR2246774 (2008f:58019)

    Google Scholar 

  11. Jozef Dodziuk and Leon Karp, Spectral and function theory for combinatorial Laplacians, Geometry of random motion (Ithaca, N.Y., 1987), Contemp. Math., vol. 73, Amer. Math. Soc., Providence, RI, 1988, pp. 25–40. MR954626 (89h:58220)

    Google Scholar 

  12. Peter G. Doyle and J. Laurie Snell, Random walks and electric networks, Carus Monograph, Mathematical Association of America, 1984.

    Google Scholar 

  13. G.V. Epifanov, Reduction of a plane graph to an edge by star-triangle transformations, Dokl. Akad. Nauk SSSR 166 (1966), 19–22. MR0201337 (34 #1221)

    Google Scholar 

  14. I.M. Gel’fand, R.A. Minlos, and Z.Ja. ˇSapiro, Predstavleniya gruppy vrashcheni I gruppy Lorentsa, ikh primeneniya, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1958. MR0114876 (22 #5694)

    Google Scholar 

  15. Leonard Gross, Potential theory on Hilbert space, J. Functional Analysis 1 (1967), 123–181. MR0227747 (37 #3331)

    Google Scholar 

  16. , Abstract Wiener measure and infinite dimensional potential theory, Lectures in Modern Analysis and Applications, II, Lecture Notes in Mathematics, Vol. 140. Springer, Berlin, 1970, pp. 84–116. MR0265548 (42 #457)

    Google Scholar 

  17. Takeyuki Hida, Brownian motion, Applications of Mathematics, vol. 11, Springer- Verlag, New York, 1980, Translated from the Japanese by the author and T.P. Speed. MR562914 (81a:60089)

    Google Scholar 

  18. Palle E.T. Jorgensen and Erin P.J. Pearse, Operator theory and analysis of infinite resistance networks, Preprint (2008.), 1–376, arXiv:0806.3881.

    Google Scholar 

  19. , Boundary representations of reversible and nonreversible Markov chains on resistance networks, In preparation (2009), 25 pages.

    Google Scholar 

  20. , A discrete Gauss-Green identity for unbounded Laplace operators and transience of random walks, In review (2009), 1–26, arXiv:0906.1586.

    Google Scholar 

  21. , Gel’fand triples and boundaries of infinite networks, In preparation (2009), 1–18, arXiv:0906.2745.

    Google Scholar 

  22. , Spectral reciprocity and matrix representations of unbounded operators, To appear: J. Funct. Anal. (2011), 34 pages, arXiv:0911.0185.

    Google Scholar 

  23. , A Hilbert space approach to effective resistance metrics, Complex Anal. Oper. Theory 4 (2010), no. 4, 975–1030, arXiv:0906.2535.

    Google Scholar 

  24. , Interpolation on resistance networks, (2010), 14 pages. In preparation. [25], Multiplication operators on the energy space, To appear: Journal of Operator Theory (2010), 25 pages. arXiv:1007.3516.

    Google Scholar 

  25. , Scattering theory on resistance networks, (2010), 13 pages. In preparation.

    Google Scholar 

  26. , Spectral permanence and perturbations in the energy space, In preparation (2011), 13 pages.

    Google Scholar 

  27. HongBing Ju, Ka-Sing Lau, and Xiang-YangWang, Post-critically finite fractals and Martin boundary, Preprint (2010), 1–23.

    Google Scholar 

  28. Vadim A. Kaimanovich, Poisson boundaries of random walks on discrete solvable groups, Probability measures on groups, X (Oberwolfach, 1990), Plenum, New York, 1991, pp. 205–238. MR1178986 (94m:60014)

    Google Scholar 

  29. , Random walks on Sierpinski graphs — hyperbolicity and stochastic homogenization, Fractals in Graz 2001: analysis, dynamics, geometry, stochastics, Birkh¨auser Verlag, 2003, pp. 145–183.

    Google Scholar 

  30. Anders Karlsson and Wolfgang Woess, The Poisson boundary of lamplighter random walks on trees, Geom. Dedicata 124 (2007), 95–107. MR2318539 (2009b:60246)

    Google Scholar 

  31. Takashi Kayano and Maretsugu Yamasaki, Boundary limit of discrete Dirichlet potentials, Hiroshima Math. J. 14 (1984), no. 2, 401–406. MR764458 (86j:31007)

    Google Scholar 

  32. , Some properties of Royden boundary of an infinite network, Mem. Fac. Sci. Shimane Univ. 22 (1988), 11–19. MR995626 (90m:31015)

    Google Scholar 

  33. , Discrete Dirichlet integral formula, Discrete Appl.Math. 22 (1988/89), no. 1, 53–68. MR971616 (90c:31017)

    Google Scholar 

  34. Jun Kigami, Analysis on fractals, Cambridge Tracts in Mathematics, vol. 143, Cambridge University Press, Cambridge, 2001. MR1840042 (2002c:28015)

    Google Scholar 

  35. , Harmonic analysis for resistance forms, J. Funct. Anal. 204 (2003), no. 2, 399–444. MR2017320 (2004m:31010)

    Google Scholar 

  36. , Dirichlet forms and associated heat kernels on the Cantor set induced by random walks on trees, Preprint (2009), 1–65, Available on Kigami’s web site.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palle E. T. Jorgensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel AG

About this paper

Cite this paper

Jorgensen, P.E.T., Pearse, E.P.J. (2011). Resistance Boundaries of Infinite Networks. In: Lenz, D., Sobieczky, F., Woess, W. (eds) Random Walks, Boundaries and Spectra. Progress in Probability, vol 64. Springer, Basel. https://doi.org/10.1007/978-3-0346-0244-0_7

Download citation

Publish with us

Policies and ethics