Skip to main content

Percolation Hamiltonians

  • Conference paper
  • First Online:

Part of the book series: Progress in Probability ((PRPR,volume 64))

Abstract

There has been quite some activity and progress concerning spectral asymptotics of random operators that are defined on percolation subgraphs of different types of graphs. In this short survey we record some of these results and explain the necessary background coming from different areas in mathematics: graph theory, group theory, probability theory and random operators.

Mathematics Subject Classification (2000). Primary 05C25; Secondary 82B43.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Acosta and A. Klein, Analyticity of the density of states in the Anderson model on the Bethe lattice. J. Stat. Phys. 69 (1992), 277–305.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Aizenman and D. Barsky, Sharpness of the phase transition in percolation models. Commun. Math. Phys. 108 (1987), 489–526.

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Alexander and R. Orbach, Density of states on fractals: “fractons”. J. Physique (Paris) Lett. 43 (1982), L625–L631.

    Google Scholar 

  4. P. Antal, Enlargement of obstacles for the simple random walk. Ann. Probab. 23 (1995), 1061–1101.

    Article  MathSciNet  MATH  Google Scholar 

  5. T. Antunovi´c and I. Veseli´c, Spectral asymptotics of percolation Hamiltonians in amenable Cayley graphs. Operator Theory: Advances and Applications, Vol 186 (2008), 1–26.

    Google Scholar 

  6. T. Antunovi´c and I. Veseli´c, Sharpness of the phase transition and exponential decay of the subcritical cluster size for percolation and quasi-transitive graphs. J. Stat. Phys. 130 (2008), 983–1009.

    Google Scholar 

  7. T. Antunovi´c and I.Veseli´c, Equality of Lifshitz and van Hove exponents on amenable Cayley graphs. J. Math. Pures Appl. 92 (2009), 342–362.

    Google Scholar 

  8. M.T. Barlow, Random walks on supercritical percolation clusters. Ann. Probab. 32 (2004), 3024–3084.

    Article  MathSciNet  MATH  Google Scholar 

  9. M.T. Barlow and T. Kumagai, Random walk on the incipient infinite cluster on trees. Illinois J. Math. 50 (2006), 33–65.

    MathSciNet  MATH  Google Scholar 

  10. H. Bass. The degree of polynomial growth of finitely generated nilpotent groups. Proc. London Math. Soc. 25 (1972), 603–614.

    Article  MathSciNet  MATH  Google Scholar 

  11. H.A. Bethe, Statistical theory of superlattices. Proc. Roy. Soc. London Ser. A, 150 (1935), 552–575.

    Article  MATH  Google Scholar 

  12. M. Biskup and W. K¨onig, Long-time tails in the parabolic Anderson model with bounded potential. Ann. Probab. 29 (2001), 636–682.

    Google Scholar 

  13. B. Bollob´as, Random graphs, 2nd ed. Cambridge University Press, Cambridge, 2001.

    Google Scholar 

  14. C. Borgs, J.T. Chayes, H. Kesten and J. Spencer, The birth of the infinite cluster: finite-size scaling in percolation. Commun. Math. Phys. 224 (2001), 153–204.

    Article  MathSciNet  MATH  Google Scholar 

  15. S.R. Broadbent and J.M. Hammersley, Percolation processes. I. Crystals and mazes. Proc. Cambridge Philos. Soc. 53 (1957), 629–641.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Bunde and S. Havlin, Percolation II. In: Fractals and disordered systems. A. Bunde and S. Havlin (Eds.), Springer, Berlin, 1996, pp. 115–175.

    Google Scholar 

  17. R. Carmona and J. Lacroix, Spectral theory of random Schr¨odinger operators. Birkh¨auser, Boston, MA, 1990.

    Google Scholar 

  18. Y. Colin de Verdi`ere, Spectres de graphes. Soci´et´e Math´ematique de France, Paris, 1998 [in French].

    Google Scholar 

  19. P.-G. de Gennes, P. Lafore and J. Millot, Amas accidentels dans les solutions solides d´esordonn´ees. J. Phys. Chem. Solids 11 (1959), 105–110.

    Article  Google Scholar 

  20. P.-G. de Gennes, P. Lafore and J. Millot, Sur un exemple de propagation dans un milieux d´esordonn´e. J. Physique Rad. 20 (1959), 624–632.

    Article  Google Scholar 

  21. J. Dodziuk, D. Lenz, N. Peyerimhoff, T. Schick and I. Veseli´c (eds.), L2-spectral invariants and the Integrated Density of States. Volume 3 of Oberwolfach Reports, 2006, url: http://www.mfo.de/programme/schedule/2006/08b/OWR 2006 09.pdf

  22. J. Dodziuk, P. Linnell, V. Mathai, T. Schick and S. Yates, Approximating L2- invariants, and the Atiyah conjecture. Commun. Pure Appl. Math. 56 (2003), 839– 873.

    Article  MathSciNet  MATH  Google Scholar 

  23. P. Erd˝os and A. R´enyi, On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. A 5 (1960), 17–61. Reprinted in: J. Spencer (Ed.) P. Erd˝os: the art of counting. MIT Press, Cambridge, MA, 1973, Chap 14, Article 324.

    Google Scholar 

  24. P. Grassberger, Conductivity exponent and backbone dimension in 2-d percolation. Physica A 262 (1999), 251–263.

    Article  MathSciNet  Google Scholar 

  25. G. Grimmett, Percolation, 2nd ed. Springer, Berlin, 1999.

    Google Scholar 

  26. M. Gromov, Groups of polynomial growth and expanding maps. Inst. Hautes ´ Etudes Sci. Publ. Math. 53 (1981), 53–73.

    Google Scholar 

  27. M. Gromov and M.A. Shubin, Von Neumann spectra near zero. Geom. Funct. Anal. 1 (1991), 375–404.

    Article  MathSciNet  MATH  Google Scholar 

  28. J.M. Hammersley, Percolation processes. II. The connective constant. Proc. Cambridge Philos. Soc. 53 (1957), 642–645.

    MathSciNet  MATH  Google Scholar 

  29. D. Heicklen and C. Hoffman, Return probabilities of a simple random walk on percolation clusters. Electronic J. Probab. 10 (2005), 250–302.

    MathSciNet  Google Scholar 

  30. A. Hof, Percolation on Penrose tilings. Can. Math. Bull. 41 (1998), 166–177. [31] H. Kesten, Percolation theory for mathematicians. Birkh¨auser, Boston, MA, 1982.

    Google Scholar 

  31. H. Kesten, What is percolation? Notices of the AMS, May 2006, url: http://www.ams.org/notices/200605/what-is-kesten.pdf

  32. O. Khorunzhy, W. Kirsch and P. M¨uller, Lifshits tails for spectra of Erd˝os–R´enyi random graphs. Ann. Appl. Probab. 16 (2006), 295–309.

    Google Scholar 

  33. W. Kirsch, Random Schr¨odinger operators and the density of states. Stochastic aspects of classical and quantum systems (Marseille, 1983), 68–102, Lecture Notes in Math., 1109, Springer, Berlin, 1985.

    Google Scholar 

  34. W. Kirsch and B. Metzger, The integrated density of states for random Schr¨odinger operators. In: Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon’s 60th birthday. Proc. Sympos. Pure Math., 76, Part 2, 649–696, Amer. Math. Soc., Providence, RI, 2007.

    Google Scholar 

  35. W. Kirsch and P. M¨uller, Spectral properties of the Laplacian on bond-percolation graphs. Math. Z. 252 (2006), 899–916.

    Google Scholar 

  36. D. Lenz, Continuity of eigenfunctions of uniquely ergodic dynamical systems and intensity of Bragg peaks. Commun. Math. Phys. 287 (2009), 225–258.

    Article  MathSciNet  MATH  Google Scholar 

  37. D. Lenz, P. M¨uller and I. Veseli´c, Uniform existence of the integrated density of states for models on Zd. Positivity 12 (2008), 571–589.

    Google Scholar 

  38. D. Lenz and I. Veseli´c, Hamiltonians on discrete structures: jumps of the integrated density of states and uniform convergence. Math. Z. 263 (2009), 813–835.

    Google Scholar 

  39. I.M. Lifshitz, Structure of the energy spectrum structure of the impurity band in disordered solid solutions. Sov. Phys. JETP 17 (1963), 1159–1170. [Russian original: Zh. Eksp. Teor. Fiz. 44 (1963), 1723–1741].

    Google Scholar 

  40. I.M. Lifshitz, The energy spectrum of disordered systems. Adv. Phys. 13 (1964), 483–536.

    Article  Google Scholar 

  41. I.M. Lifshitz, Energy spectrum structure and quantum states of disordered condensed systems. Sov. Phys. Usp. 7 (1965) 549–573. [Russian original: Usp. Fiz. Nauk 83 (1964), 617–663].

    Google Scholar 

  42. E. Lindenstrauss, Pointwise ergodic theorems for amenable groups. Invent. Math. 146 (2001), 259–295.

    Article  MathSciNet  MATH  Google Scholar 

  43. W. L¨uck, L2-invariants: theory and applications to geometry and K-theory. Springer, Berlin, 2002.

    Google Scholar 

  44. V. Mathai and S. Yates, Approximating spectral invariants of Harper operators on graphs. J. Funct. Anal. 188 (2002), 111–136.

    Article  MathSciNet  MATH  Google Scholar 

  45. P. Mathieu and E. Remy, Isoperimetry and heat kernel decay on percolation clusters. Ann. Probab. 32 (2004), 100–128.

    Article  MathSciNet  MATH  Google Scholar 

  46. M.V. Men’shikov, Coincidence of critical points in percolation problems. SovietMath. Dokl. 33 (1986), 856–859. [Russian original: Dokl. Akad. Nauk SSSR 288 (1986), 1308–1311].

    Google Scholar 

  47. M.V. Men’shikov, S.A. Molchanov and A.F. Sidorenko, Percolation theory and some

    Google Scholar 

  48. applications. J. Soviet Math. 42 (1988), 1766–1810. [Russian original: Itogi Nauki Tekh., Ser. Teor. Veroyatn., Mat. Stat., Teor. Kibern. 24 (1986), 53–110].

    Google Scholar 

  49. P. M¨uller and C. Richard, Random colourings of aperiodic graphs: Ergodic and spectral

    Google Scholar 

  50. properties. Preprint arXiv:0709.0821.

    Google Scholar 

  51. P. M¨uller and C. Richard, Ergodic properties of randomly coloured point sets. Preprint arXiv:1005.4884.

    Google Scholar 

  52. P. M¨uller and P. Stollmann, Spectral asymptotics of the Laplacian on super-critical bond-percolation graphs. J. Funct. Anal. 252 (2007), 233–246.

    Google Scholar 

  53. S.P. Novikov and M.A. Shubin, Morse inequalities and von Neumann II1-factors. Soviet Math. Dokl. 34 (1987), 79–82. [Russian original: Dokl. Akad. Nauk SSSR 289 (1986), 289–292].

    Google Scholar 

  54. L. Pastur and A. Figotin, Spectra of random and almost-periodic operators. Springer, Berlin, 1992.

    Google Scholar 

  55. Y. Peres, Probability on trees: an introductory climb. In: Lectures on probability

    Google Scholar 

  56. theory and statistics (Saint-Flour, 1997). Lecture Notes in Math., vol. 1717, 193– 280, Springer, Berlin, 1999.

    Google Scholar 

  57. T. Reinhold, ¨ Uber die integrierte Zustandsdichte des Laplace-Operators auf Bond-Perkolationsgraphen des Bethe-Gitters. Diploma thesis, Universit¨at G¨ottingen, 2009 [in German].

    Google Scholar 

  58. F. Sobieczky, An interlacing technique for spectra of random walks and its application to finite percolation clusters. JOTP, Vol. 23, No. 3, (2010), 639–670.

    MathSciNet  MATH  Google Scholar 

  59. F. Sobieczky, Bounds for the annealed return probability on large finite random percolation

    Google Scholar 

  60. clusters. Preprint arXiv:0812.0117.

    Google Scholar 

  61. P. Stollmann, Caught by disorder: lectures on bound states in random media.

    Google Scholar 

  62. Birkh¨auser, Boston, 2001.

    Google Scholar 

  63. L. van den Dries and A. Wilkie, Gromov’s theorem on groups of polynomial growth

    Google Scholar 

  64. and elementary logic. J. Algebra 89 (1984), 349–374.

    Article  MathSciNet  Google Scholar 

  65. N.Th. Varopoulos, Random walks and Brownian motion on manifolds. Symposia

    Google Scholar 

  66. Mathematica, Vol. XXIX (Cortona, 1984), 97–109, Academic Press, New York, 1987.

    Google Scholar 

  67. I. Veseli´c, Spectral analysis of percolation Hamiltonians. Math. Ann. 331 (2005)

    Google Scholar 

  68. 841–865.

    Google Scholar 

  69. I. Veseli´c, Existence and regularity properties of the integrated density of states of random

    Google Scholar 

  70. Schr¨odinger operators. Lecture Notes in Mathematics, 1917. Springer, Berlin

    Google Scholar 

  71. 2008.

    Google Scholar 

  72. J. von Neumann, Zur allgemeinen Theorie des Mases. Fund. Math. 13 (1929), 73–

    Google Scholar 

  73. 111.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel AG

About this paper

Cite this paper

Müller, P., Stollmann, P. (2011). Percolation Hamiltonians. In: Lenz, D., Sobieczky, F., Woess, W. (eds) Random Walks, Boundaries and Spectra. Progress in Probability, vol 64. Springer, Basel. https://doi.org/10.1007/978-3-0346-0244-0_13

Download citation

Publish with us

Policies and ethics