Skip to main content

Galanin and Spinal Pain Mechanisms: Past, Present, and Future

  • Chapter
  • First Online:
Galanin

Part of the book series: Experientia Supplementum ((EXS,volume 102))

Abstract

Since the discovery of galanin in 1983, one of the most frequently suggested physiological function for this peptide is pain modulation at the level of the spinal cord. This notion, initially based on the preferential distribution of galanin in dorsal spinal cord, has been supported by results from a large number of morphological, molecular, and functional studies. It is generally agreed that spinally applied galanin produces a biphasic, dose-dependent effect on spinal nociception through activation of GalR1 (inhibitory) or GalR2 (excitatory) receptors. Galanin also appears to have an endogenous inhibitory role, particularly after peripheral nerve injury when the synthesis of galanin is increased in sensory neurons. In recent years, small molecule ligands of galanin receptors have been developed, which may lead to the development of analgesic drugs, which affects the galanin system at the spinal cord level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rökaeus A, Melander T, Hökfelt T, Lundberg JM, Tatemoto K, Carlquist M, Mutt V (1984) A galanin like peptide in the central nervous system and intestine of the rat. Neurosci Lett 47:161–166

    Article  PubMed  Google Scholar 

  2. Ch'ng JLC, Christofides ND, Anand P, Gibson SJ, Allen YS, Su HC, Tatemoto K, Morrison JFB, Polak JM, Bloom SR (1985) Distribution of galanin immunoreactivity in the central nervous system and the response of galanin-containing neuronal pathways to injury. Neuroscience 16:343–354

    Article  PubMed  Google Scholar 

  3. Skofitsch G, Jacobowitz D (1985) Galanin-like immunoreactivity in capsaicin sensitive sensory neurons and ganglia. Brain Res Bull 15:191–195

    Article  PubMed  CAS  Google Scholar 

  4. Ju G, Hökfelt T, Brodin E, Fahrenkrug J, Fischer JA, Frey P, Elde RP, Brown JC (1987) Primary sensory neurons of the rat showing calcitonin gene-related peptide(CGRP) immunoreactivity and their relation to substance P-, somatostatin-, galanin-, vasoactive intestinal polypeptide- and cholecytokinin-immunoreactive ganglion cells. Cell Tissue Res 247:417–431

    Article  PubMed  CAS  Google Scholar 

  5. Zhang X, Ju G, Elde R, Hökfelt T (1993) Effect of peripheral nerve cut on neuropeptides in dorsal root ganglia and the spinal cord of monkey with special reference to galanin. J Neurocytol 22:342–381

    Article  PubMed  CAS  Google Scholar 

  6. Landry M, Åman K, Dostrovsky J, Lozano AM, Carlstedt T, Spenger C, Josephson A, Wiesenfeld-Hallin Z, Hökfelt T (2003) Galanin expression n adult human dorsal root ganglion neurons: initial observations. Neuroscience 117:795–809

    Article  PubMed  CAS  Google Scholar 

  7. Simmons DR, Spike RC, Todd AJ (1995) Galanin is contained in GABAergic neurons in the rat spinal dorsal horn. Neurosci Lett 187:119–122

    Article  PubMed  CAS  Google Scholar 

  8. Zhang X, Nicholas AP, Hökfelt T (1995) Ultrastructural studies on peptides in the dorsal horn of the rat spinal cord. 2. Coexistence of galanin with other peptides in local neurons. Neuroscience 64:875–891

    Article  PubMed  CAS  Google Scholar 

  9. Ju G, Melander T, Ceccatelli S, Hökfelt T, Frey P (1987) Immunohistochemical evidence for a spinothalamic pathway co-containing cholecystokinin- and galanin-like immunoreactivities in the rat. Neuroscience 20:439–456

    Article  PubMed  CAS  Google Scholar 

  10. Fisone G, Berthold M, Bedecs K, Undén A, Bartfai T, Bertorelli R, Consolo S, Crawley JN, Martin B, Nilsson S et al (1989) N-terminal galanin-(1-16) fragment is an agonist at the hippocampal galanin receptor. Proc Natl Acad Sci USA 86:9588–9591

    Article  PubMed  CAS  Google Scholar 

  11. Kar S, Quirion R (1994) Galanin receptor binding sites in adult rat spinal cord respond differentially to neonatal capsaicin, dorsal rhizotomy and peripheral axotomy. Eur J Neurosci 6:1917–1921

    Article  PubMed  CAS  Google Scholar 

  12. Zhang X, Ji RR, Nilsson S, Villar M, Ubink R, Ju G, Wiesenfeld-Hallin Z, Hökfelt T (1995) Neuropeptide Y and galanin binding sites in rat and monkey lumbar dorsal root ganglia and spinal cord and effect of peripheral axotomy. Eur J Neurosci 7:367–380

    Article  PubMed  CAS  Google Scholar 

  13. Branchek T, Smith KE, Gerald C, Walker MW (2000) Galanin receptor subtypes. Trends Pharmacol Sci 21:109–116

    Article  PubMed  CAS  Google Scholar 

  14. Parker EM, Izzarelli DG, Nowak HP, Mahle CD, Iben LG, Wang J, Goldstein ME (1995) Cloning and characterization of the rat GALR1 galanin receptor from Rin 14B insulinoma cells. Mol Brain Res 34:179–189

    Article  PubMed  CAS  Google Scholar 

  15. Gustafson EL, Smith KE, Durkin MM, Gerald C, Branchek TA (1996) Distribution of a rat galanin receptor mRNA in rat brain. Neuroreport 7:953–957

    Article  PubMed  CAS  Google Scholar 

  16. O'Donnell D, Ahmad S, Wahlestedt C, Walker P (1999) Expression of the novel galanin receptor subtype GALR2 in the adult rat CNS: distinct distribution from GALR1. J Comp Neurol 409:469–481

    Article  PubMed  Google Scholar 

  17. Brumovsky P, Mennicken F, O'Donnell D, Hökfelt T (2006) Differential distribution and regulation of galanin receptors- 1 and -2 in the rat lumbar spinal cord. Brain Res 1085:111–120

    Article  PubMed  CAS  Google Scholar 

  18. Waters SM, Krause JE (2000) Distribution of galanin-1, -2 and -3 receptor messenger RNAS in central and peripheral rat tissues. Neuroscience 95:265–271

    Article  PubMed  CAS  Google Scholar 

  19. Smith KE, Walker MW, Artymyshyn R, Bard J, Borowsky B, Tamm JA, Yao WJ, Vaysse PJ, Branchek TA, Gerald C et al (1998) Cloned human and rat galanin GALR3 receptors, Pharmacology and activation of G-protein inwardly rectifying K+ channels. J Biol Chem 273:23321–23326

    Article  PubMed  CAS  Google Scholar 

  20. Xu Z-Q, Shi T-J, Landry M, Hökfelt T (1996) Evidence for galanin receptors in primary sensory neurones and effect of axotomy and inflammation. Neuroreport 8:237–242

    Article  PubMed  CAS  Google Scholar 

  21. Shi T-J, Zhang X, Holmberg K, Xu Z-Q, Hökfelt T (1997) Expression and regulation of galanin-R2 receptors in rat primary sensory neurons: effect of axotomy and inflammation. Neurosci Lett 237:57–60

    Article  Google Scholar 

  22. Post C, Alari L, Hökfelt T (1988) Intrathecal galanin increases the latency in the tail flick and hot plate tests in mouse. Acta Physiol Scand 132:583–584

    Article  PubMed  CAS  Google Scholar 

  23. Cridland RA, Henry JL (1988) Effects of intrathecal administration of neuropeptides on a spinal nociceptive reflex in the rat: VIP, galanin, CGRP, TRH, somatostatin and angiotensin II. Neuropeptides 11:23–32

    Article  PubMed  CAS  Google Scholar 

  24. Wiesenfeld-Hallin Z, Xu X-J, Villar MJ, Hökfelt T (1990) Intrathecal galanin potentiates the spinal analgesic effect of morphine: electrophysiological and behavioural studies. Neurosci Lett 109:217–221

    Article  PubMed  CAS  Google Scholar 

  25. Kuraishi Y, Kawamura M, Yamaguchi H, Houtani T, Kawabata S, Futaki S, Fujii N, Satoh M (1991) Intrathecal injections of galanin and its antiserum affect nociceptive response of rat to mechanical, but not thermal, stimuli. Pain 44:321–324

    Article  PubMed  CAS  Google Scholar 

  26. Wiesenfeld-Hallin Z, Xu XJ, Hao JX, Hökfelt T (1993) The behavioural effects of intrathecal galanin on tests of thermal and mechanical nociception in the rat. Acta Physiol Scand 147:457–458

    Article  PubMed  CAS  Google Scholar 

  27. Wiesenfeld-Hallin Z, Villar MJ, Hökfelt T (1988) Intrathecal galanin at low doses increases spinal reflex excitability in rats more to thermal than mechanical stimuli. Exp Brain Res 71:663–666

    Article  PubMed  CAS  Google Scholar 

  28. Wiesenfeld-Hallin Z, Villar MJ, Hökfelt T (1989) The effect of intrathecal galanin and C-fiber stimulation on the flexor reflex in the rat. Brain Res 486:205–213

    Article  PubMed  CAS  Google Scholar 

  29. Xu X-J, Wiesenfeld-Hallin Z, Villar MJ, Fahrenkrug J, Hökfelt T (1990) On the role of galanin, substance P and other neuropeptides in primary sensory neurons of the rat: Studies on spinal reflex excitability and peripheral axotomy. Eur J Neurosci 2:733–743

    Article  PubMed  Google Scholar 

  30. Xu X-J, Wiesenfeld-Hallin Z, Hökfelt T (1991) Intrathecal galanin blocks the prolonged increase in spinal cord flexor reflex induced by conditioning stimulation of unmyelinated muscle afferents in the rat. Brain Res 541:350–353

    Article  PubMed  CAS  Google Scholar 

  31. Hua X-Y, Salgado KF, Gu G, Fitzsimmons B, Kondo I, Bartfai T, Yaksh T (2005) Mechanisms of antinociception of spinal galanin: how does galanin inhibit spinal sensitization? Neuropeptides 39:211–216

    Article  PubMed  CAS  Google Scholar 

  32. Hua X-Y, Hayes CS, Hofer A, Fitzsimmons B, Kilk K, Langel Ü, Bartfai T, Yaksh TL (2004) Galanin acts at GALR1 receptors in spinal antinociception: interaction with morphine and AP-5. J Pharmacol Exp Ther 308:574–582

    Article  PubMed  CAS  Google Scholar 

  33. Reimann W, Englberger W, Friderichs E, Selve N (1994) Wilffert B Spinal antinociception by morphine is antagonised by galanin receptor antagonists. Naunyn-Schmiedeberg's Arch Pharmacol 350:380–386

    Article  CAS  Google Scholar 

  34. Selve N, Englberger W, Friderichs E, Hennies HH, Reimann W, Wilffert B (1996) Galanin receptor antagonists attenuate spinal antinociceptive effects of DAMGO, tramadol and non-opioid drugs in rats. Brain Res 735:177–187

    Article  PubMed  CAS  Google Scholar 

  35. Xu X-J, Wiesenfeld-Hallin Z, Fisone G, Bartfai T, Hökfelt T (1990) The N-terminal 1-16, but not C-terminal 17-29, galanin fragment affects the flexor reflex in rats. Eur J Pharmacol 182:137–141

    Article  PubMed  CAS  Google Scholar 

  36. Liu HX, Hökfelt T (2002) The participation of galanin in pain processing at the spinal level. Trends Pharmacol Sci 23:468–474

    Article  PubMed  CAS  Google Scholar 

  37. Bartfai T, Bedecs K, Land T, Langel Ü, Bertorelli R, Girotti P, Consolo S, Xu X-J, Wiesenfeld-Hallin Z, Nilsson S et al (1991) M-15, high-affinity chimeric peptide that blocks the neuronal actions of galanin in the hippocampus, locus coeruleus and spinal cord. Proc Natl Acad Sci USA 88:10961–10965

    Article  PubMed  CAS  Google Scholar 

  38. Xu X-J, Wiesenfeld-Hallin Z, Langel Ü, Bedecs K, Bartfai T (1995) New high affinity peptide antagonists to the spinal galanin receptor. Br J Pharmacol 116:2076–2080

    Article  PubMed  CAS  Google Scholar 

  39. Bartfai T, Langel Ü, Bedecs K, Andell S, Land T, Gregersen S, Ahrén B, Girotti P, Consolo S, Corvin R et al (1993) M35 and M40 distinguish between the putative galanin receptor subtypes. Proc Natl Acad Sci USA 90:11287–11291

    Article  PubMed  CAS  Google Scholar 

  40. Pooga M, Hällbrink M, Valkna A, Soomets U, Saar K, Rezaei K, Kahl U, Hao J-X, Xu X-J, Wiesenfeld-Hallin Z et al (1998) Cell penetrating PNA antisense oligoneuleotides modify galanergic pain transmission in vivo. Nat Biotechnol 16:857–861

    Article  PubMed  CAS  Google Scholar 

  41. Liu H-X, Brumovsky P, Schmidt R, Brown W, Payza K, Hodzic L, Pou C, Godbout C, Hökfelt T (2001) Receptor subtype-specific pronociceptive and analgesic actions of galanin in the spinal cord: selective actions via GalR1 and GalR2 receptors. Proc Natl Acad Sci USA 98:9960–9964

    Article  PubMed  CAS  Google Scholar 

  42. Kerekes N, Mennicken F, O’Donnell D, Hökfelt T, Hill RH (2003) Galanin increases membrane excitability and enhances Ca2+ currents in adult, acutely dissociated dorsal root ganglion neurons. Eur J Neurosci 18:2957–2966

    Article  PubMed  Google Scholar 

  43. Wang S, Hashemi T, Fried S, Clemmons AL, Hawes BE (1998) Differential intracellular signalling of the GalR1 and GalR2 galanin receptor subtypes. Biochemistry 37:6711–6717

    Article  PubMed  CAS  Google Scholar 

  44. Alier KA, Chen Y, Sollenberg UE, Langel U, Smith PA (2008) Selective stimulation of GalR1 and GalR2 in rat substantia gelatinosa reveals a cellular basis for the anti- and pro-nociceptive actions of galanin. Pain 137:138–146

    Article  PubMed  CAS  Google Scholar 

  45. Wiesenfeld-Hallin Z, Xu X-J, Langel Ü, Bedecs K, Hökfelt T, Bartfai T (1992) Galanin-mediated control of pain: enhanced role after nerve injury. Proc Natl Acad Sci USA 89:3334–3337

    Article  PubMed  CAS  Google Scholar 

  46. Karr BJ, Cafferty WBJ, Gupta YK, Bacon A, Wynick D, McMahon SB, Thompson SWN (2000) Galanin knock-out mice reveal nociceptive deficits following peripheral nerve injury. Eur J Neurosci 12:793–802

    Article  Google Scholar 

  47. Hygge-Blakeman K, Hao J-X, Xu X-J, Jacoby AS, Shine J, Crawley JN, Iismaa T, Wiesenfeld-Hallin Z (2003) Hyperalgesia and increased neuropathic pain-like response in mice lacking galanin receptor 1 receptors. Neuroscience 117:221–227

    Article  Google Scholar 

  48. Malkmus S, Lu X, Bartfai T, Yaksh TL, Hua X-Y (2005) Increased hyperalgesia after tissue injury and faster recovery of allodynia after nerve injury in the GalR1 knockout mice. Neuropeptides 39:217–221

    Article  PubMed  CAS  Google Scholar 

  49. Grass S, Crawley JN, Xu X-J, Wiesenfeld-Hallin Z (2003) Reduced spinal cord sensitization to C-fibre stimulation in mice over-expressing galanin. Eur J Neurosci 17:1829–1832

    Article  PubMed  Google Scholar 

  50. Holmes FE, Bacon A, Pope RJ, Vanderplank PA, Kerr NC, Sukumaran M, Pachnis V, Wynick D (2003) Transgenic overexpression of galanin in the dorsal root ganglia modulates pain-related behaviour. Proc Natl Acad Sci USA 100:6180–6185

    Article  PubMed  CAS  Google Scholar 

  51. Hygge-Blakeman K, Brumovsky P, Hao JX, Xu XJ, Hökfelt T, Crawley JN, Wiesenfeld-Hallin Z (2004) Galanin over-expression decreases the development of neuropathic pain-like behaviors in mice after partial sciatic nerve injury. Brain Res 1025:152–158

    Article  PubMed  CAS  Google Scholar 

  52. Xu X-J, Hökfelt T, Bartfai T, Wiesenfeld-Hallin Z (2000) Galanin and spinal nociceptive mechanisms: recent advances and therapeutic implications. Neuropeptides 34:137–147

    Article  PubMed  CAS  Google Scholar 

  53. Hökfelt T, Wiesenfeld-Hallin Z, Villar M, Melander T (1987) Increase of galanin-like immunoreactivity in rat dorsal root ganglion cells after peripheral axotomy. Neurosci Lett 83:217–220

    Article  PubMed  Google Scholar 

  54. Villar MJ, Cortés R, Theodorsson E, Wiesenfeld-Hallin Z, Schalling M, Fahrenkrug J, Emson PC, Hökfelt T (1989) Neuropeptide expression in rat dorsal root ganglion cells and spinal cord after peripheral nerve injury with special reference to galanin. Neuroscience 33:587–604

    Article  PubMed  CAS  Google Scholar 

  55. Nahin RL, Ren K, De Leon M, Ruda M (1994) Primary sensory neurons exhibit altered gene expression in a rat model of neuropathic pain. Pain 58:95–108

    Article  PubMed  CAS  Google Scholar 

  56. Ma W, Bisby MA (1997) Differential expression of galanin immunoreactivities in the primary sensory neurons following partial and complete sciatic nerve injuries. Neuroscience 79:1183–1195

    Article  PubMed  CAS  Google Scholar 

  57. Shi TJ, Cui JG, Meyerson BA, Linderoth B, Hökfelt T (1999) Regulation of galanin and neuropeptide Y in dorsal root ganglia and dorsal horn in rat mononeuropathic models: possible relation to tactile hypersensitivity. Neuroscience 93:741–757

    Article  PubMed  CAS  Google Scholar 

  58. Kashiba H, Sanba E, Kawai Y, Ueda Y, Tohyama M (1992) Axonal blockade induces the expression of vasoactive intestinal polypeptide and galanin in rat dorsal root ganglion neurons. Brain Res 577:19–28

    Article  PubMed  CAS  Google Scholar 

  59. Verge VMK, Richardson PM, Wiesenfeld-Hallin Z, Hökfelt T (1995) Differential influences of nerve growth factor on neuropeptide expression in vivo: a novel role in peptide suppression in adult sensory neurons. J Neurosci 15:2081–2096

    PubMed  CAS  Google Scholar 

  60. Kerekes N, Landry M, Rydh-Rinder M, Hökfelt T (1997) The effect of NGF, BDNF and bFGF on expression of galanin in cultured rat dorsal root ganglia. Brain Res 754:131–141

    Article  PubMed  CAS  Google Scholar 

  61. Rao MS, Sun Y, Escary JL, Perreau J, Tresser S, Patterson PH, Zigmond RE, Brulet P, Landis SC (1993) Luekemia inhibitory factor mediates an injury response but not a target-directed developmental transmitter switch in sympathetic neurons. Neuron 11:1175–1185

    Article  PubMed  CAS  Google Scholar 

  62. Corness JD, Shi T-J, Xu Z-Q, Brulet P, Hökfelt T (1996) Influence of leukemia inhibitory factor on galanin/GMAP expression in primary sensory neurons after injury. Exp Brain Res 112:79–88

    Article  PubMed  CAS  Google Scholar 

  63. Sun Y, Zigmond R (1996) Leukemia inhibitory factor induced in the sciatic nerve after axotomy is involved in the induction of galanin in sensory neurons. Eur J Neurosci 8:2213–2220

    Article  PubMed  CAS  Google Scholar 

  64. Hökfelt T, Zhang X, Xu Z-Q, Ji R-R, Shi T, Corness J, Kerekes N, Landry M, Rydh-Rinder M, Broberger C et al (1997) Transition of pain from acute to chronic: cellular and synaptic mechanisms. In: TS Jensen, JA Turner, Z Wiesenfeld-Hallin (eds) Proceedings of the 8th World Congress on Pain, Progress in Pain Research and Management, vol 8. IASP Press, Seattle

    Google Scholar 

  65. Wang LH, Lu JY, Bao L, Zhang X (2007) Peripheral nerve injury induces reorganization of galanin containing afferents in the superficial dorsal horn of monkey spinal cord. Eur J Neurosci 25:1087–1096

    Article  PubMed  Google Scholar 

  66. Colvin LA, Mark MA, Duggan AW (1997) The effect of a peripheral mononeuropathy on immunoreactive (ir)-galanin release in the spinal cord of the rat. Brain Res 766:259–261

    Article  PubMed  CAS  Google Scholar 

  67. Colvin LA, Duggan AW (1998) Primary afferent-evoked release of immunoreactive galanin in the spinal cord of the neuropathic rat. Br J Anaesth 81:436–443

    Article  PubMed  CAS  Google Scholar 

  68. Wiesenfeld-Hallin Z, Xu X-J, Villar MJ, Hökfelt T (1989) The effect of intrathecal galanin on the flexor reflex in rat: increased depression after sciatic nerve section. Neurosci Lett 105:149–154

    Article  PubMed  CAS  Google Scholar 

  69. Flatters S, Fox A, Dickenson AH (2002) Nerve injury induces plasticity that results in spinal inhibitory effects of galanin. Pain 98:249–258

    Article  PubMed  CAS  Google Scholar 

  70. Verge VM, Xu XJ, Langel Ü, Hökfelt T, Wiesenfeld-Hallin Z, Bartfai T (1993) Evidence for endogenous inhibition of autotomy by galanin in the rat after sciatic nerve section: demonstrated by chronic intrathecal infusion of a high affinity galanin receptor antagonist. Neurosci Lett 149:193–197

    Article  PubMed  CAS  Google Scholar 

  71. Ji RR, Zhang Q, Bedecs K, Arvidsson J, Zhang X, Xu XJ, Wiesenfeld-Hallin Z, Bartfai T, Hökfelt T (1994) Galanin antisense oligonucleotides reduce galanin levels in dorsal root ganglia and induce autotomy in rats after axotomy. Proc Natl Acad Sci USA 91:12540–12543

    Article  PubMed  CAS  Google Scholar 

  72. Hao J-X, Shi T-J, Xu IS, Kaupilla T, Xu X-J, Hökfelt T, Bartfai T, Wiesenfeld-Hallin Z (1999) Intrathecal galanin alleviates allodynia-like behavior after peripheral nerve injury. Eur J Neurosci 11:427–432

    Article  PubMed  CAS  Google Scholar 

  73. Eaton MJ, Karmally S, Martinez MA, Plunkett JA, Lopez T, Cejas PJ (1999) Lumbar transplant of neurons genetically modified to secrete galanin reverse pain-like behaviors after partial sciatic nerve injury. J Peripher Nerv Syst 4:245–257

    PubMed  CAS  Google Scholar 

  74. Coronel MF, Brumovsky PR, Hökfelt T, Villar MJ (2008) Differential galanin upregulation in dorsal root ganglia and spinal cord after graded single ligature nerve constriction of the rat sciatic nerve. J Chem Neuroanat 35:94–100

    Article  PubMed  CAS  Google Scholar 

  75. Liu H-X, Hökfelt T (2000) Effect of intrathecal galanin and its putative antagonist M35 on pain behavior in a neuropathic pain model. Brain Res 886:67–72

    Article  PubMed  CAS  Google Scholar 

  76. Devor M (1991) Neuropathic pain and injured nerve: peripheral mechanisms. Br Med Bull 47:619–630

    PubMed  CAS  Google Scholar 

  77. Hökfelt T, Zhang X, Wiesenfeld-Hallin Z (1994) Messenger plasticity in primary sensory neurons following axotomy and its functional implications. Trends Neurosci 17:22–30

    Article  PubMed  Google Scholar 

  78. Sollenberg U, Bartfai T, Landel Ü (2005) Galnon – a low-molecular weight ligand of the galanin receptors. Neuropeptides 39:161–163

    Article  PubMed  CAS  Google Scholar 

  79. Wu WP, Hao JX, Lundström L, Wiesenfeld-Hallin Z, Langel U, Bartfai T, Xu XJ (2003) Systemic galnon, a low-molecular weight galanin receptor agonist, reduces heat hyperalgesia in rats with nerve injury. Eur J Pharmacol 482:133–137

    Article  PubMed  CAS  Google Scholar 

  80. Bartfai T, Lu X, Badle-Mahdavi H, Barr AM, Mazarati A, Hua X-Y, Yaksh T, Haberhauer G, Ceide SC, Trembleau L et al (2004) Galmic, a nonpeptide galanin receptor agonist, affects behaviors in seizure, pain, and forced-swim tests. Proc Natl Acad Sci USA 101:10470–10475

    Article  PubMed  CAS  Google Scholar 

  81. Zachariou V, Brunzell DH, Hawes Stedman DR, Bartfai T, Steiner RA, Wynick D, Langel Ü, Picciotto MR (2003) The neuropeptide galanin modulates behavioral and neurochemical signs of opiate withdrawal. Proc Natl Acad Sci USA 100:9028–9033

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work conducted in the authors’ laboratories has been supported by the Swedish Research Council, Karolinska Institutet, and the Marianne and Marcus Wallenberg Foundation. We thank Dr. Tiejun Shi for generously allowing us to use his color micrographs (Fig. 2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zsuzsanna Wiesenfeld-Hallin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Basel AG

About this chapter

Cite this chapter

Xu, XJ., Hökfelt, T., Wiesenfeld-Hallin, Z. (2010). Galanin and Spinal Pain Mechanisms: Past, Present, and Future. In: Hökfelt, T. (eds) Galanin. Experientia Supplementum, vol 102. Springer, Basel. https://doi.org/10.1007/978-3-0346-0228-0_4

Download citation

Publish with us

Policies and ethics