Skip to main content

Defining Limits by Means of Integrals

  • Conference paper
Vector Measures, Integration and Related Topics

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 201))

Abstract

A particular notion of limit is introduced, for Riesz space-valued functions. The definition depends on certain ideals of subsets of the domain. It is shown that, according with our definition, every bounded function with values in a Dedekind complete Riesz space admits limit with respect to any maximal ideal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Barone, A. Giannone, R. Scozzafava, On some aspects of the theory and applications of finitely additive probability measures. Pubbl. Istit. Mat. Appl. Fac. Ingr. Univ. Stud. Roma, Quaderno No. 16 (1980), 43–53.

    MathSciNet  Google Scholar 

  2. A. Boccuto, D. Candeloro, Sandwich theorems, extension principle and amenability. Atti Sem. Mat. Fis. Univ. Modena 42 (1994), 257–271.

    MATH  MathSciNet  Google Scholar 

  3. W. Chojnacki, Sur un théorème de Day, un théorème de Mazur-Orlicz et une généralisation de quelques théorèmes de Silverman. Colloq. Math. 50 (1986), 257–262.

    MATH  MathSciNet  Google Scholar 

  4. J.S. Connor, Two-valued measures and summability. Analysis 10 (1990), 373–385.

    MATH  MathSciNet  Google Scholar 

  5. P. Kostyrko, T. Šalát, W. Wilczyński, \( \mathcal{I} \) -convergence. Real Anal. Exch. 26 (2000/2001), 669–685.

    Google Scholar 

  6. B.K. Lahiri, P. Das, \( \mathcal{I} \) and \( \mathcal{I}^ * \)-convergence in topological spaces. Math. Bohemica 130 (2005), 153–160.

    MATH  MathSciNet  Google Scholar 

  7. F. Maeda, T. Ogasawara, Representation of Vector Lattices. J. Sci. Hiroshima Univ. Ser. A 12 (1942), 17–35 (Japanese).

    MATH  MathSciNet  Google Scholar 

  8. J. Rainwater, A note on projective resolutions. Proc. Am. Math. Soc. 10 (1959), 734–735.

    Article  MATH  MathSciNet  Google Scholar 

  9. B.Z. Vulikh, Introduction to the theory of partially ordered spaces. Wolters-Noordhoff Sci. Publ., Groningen, 1967.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Boccuto, A., Candeloro, D. (2009). Defining Limits by Means of Integrals. In: Curbera, G.P., Mockenhaupt, G., Ricker, W.J. (eds) Vector Measures, Integration and Related Topics. Operator Theory: Advances and Applications, vol 201. Birkhäuser Basel. https://doi.org/10.1007/978-3-0346-0211-2_7

Download citation

Publish with us

Policies and ethics