Skip to main content

Combinatorics of Covers of Complexified Hyperplane Arrangements

  • Conference paper
  • 1036 Accesses

Part of the book series: Progress in Mathematics ((PM,volume 283))

Abstract

This is a survey of combinatorial models for covering spaces of the complement of a complexified hyperplane arrangement. We obtain a unified picture of the subject, and a generalization of various known results, by exploiting the toolkit of homotopy colimits for combinatorial applications developed by Welker, Ziegler and Živaljević.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Babson, D. N. Kozlov; Diagrams of classifying spaces and k-fold boolean algebras. ArXiv math.CO/9704227.

    Google Scholar 

  2. D. Bessis; Garside categories, periodic loops and cyclic sets. ArXiv math/0610778v1

    Google Scholar 

  3. D. Bessis; Finite complex reflection arrangements are K(π, 1). ArXiv math.AG/0610777.

    Google Scholar 

  4. D. Bessis, R. Corran; Non-crossing partitions of type (e, e, r). Adv. Math. 202 (2006), no. 1, 1-49.

    Google Scholar 

  5. M. Bestvina; Non-positively curved aspects of Artin groups of finite type. Geom. Topol. 3 (1999), 269–302 (electronic).

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Björner; Posets, regular CW complexes and Bruhat order. European J. Combin. 5 (1984), no. 1, 7–16.

    MATH  MathSciNet  Google Scholar 

  7. A. Björner; Topological methods. In Handbook of combinatorics, vol. 2, pp. 1819–1872, Elsevier, Amsterdam, 1995.

    Google Scholar 

  8. A. Björner, F. Brenti; Combinatorics of Coxeter groups. Graduate Texts in Mathematics, 231. Springer, New York, 2005.

    Google Scholar 

  9. A. Björner, P. Edelman, G. M. Ziegler; Hyperplane arrangements with a lattice of regions. Discrete Comput. Geom. 5 (1990), no. 3, 263–288.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Björner, M. Las Vergnas, B. Sturmfels, N. White, G. M. Ziegler; Oriented matroids. Second edition. Encyclopedia of Mathematics and its Applications 46. Cambridge University Press, Cambridge, 1999.

    Google Scholar 

  11. A. Björner, G. M. Ziegler; Combinatorial stratification of complex arrangements. J. Amer. Math. Soc. 5 (1992), no. 1, 105–149.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. K. Bousfield, D. M. Kan; Homotopy limits, completions and localizations. Lecture Notes in Mathematics 304, Springer, Berlin-New York 1972.

    Google Scholar 

  13. T. Brady; A partial order on the symmetric group and new K(π, 1)’s for the braid groups. Adv. Math. 161 (2001), no. 1, 20–40.

    Article  MATH  MathSciNet  Google Scholar 

  14. T. Brady, C. Watts; K(π, 1)’s for Artin groups of finite type. Geom. Dedicata 94 (2002), 225–250.

    Article  MATH  MathSciNet  Google Scholar 

  15. H. Brandt; Über eine Verallgemeinerung des Gruppenbegriffes. Math. Ann. 96 (1927), no. 1, 360–366.

    Article  MathSciNet  Google Scholar 

  16. E. Brieskorn; Sur les groupes de tresses. Séminaire Bourbaki (1971/1972), Exp. No. 401, pp. 21–44. Lecture Notes in Mathematics 317, Springer, Berlin, 1973.

    Google Scholar 

  17. R. Brown; Elements of modern topology. McGraw-Hill, New York-Toronto 1968.

    Google Scholar 

  18. R. Brown; Topology. A geometric account of general topology, homotopy types and the fundamental groupoid. Second edition. Ellis Horwood Series: Mathematics and its Applications. John Wiley and Sons, New York, 1988.

    Google Scholar 

  19. R. Brown; Groupoids and crossed objects in algebraic topology. Homology Homotopy Appl. 1 (1999), 1–78 (electronic).

    MATH  MathSciNet  Google Scholar 

  20. R. Brown, J. L. Loday; Van Kampen theorems for diagrams of spaces. Topology 26 (1987), no. 3, 311–335.

    Article  MATH  MathSciNet  Google Scholar 

  21. F. Callegaro, D. Moroni, M. Salvetti; The K(π, 1) problem for the affine Artin group of type \( \tilde B_n \) and its cohomology. arXiv:0705.2830.

    Google Scholar 

  22. R. Charney, M. Davis; The K(π, 1)-problem for hyperplane complements associated to infinite reflection groups. J. Amer. Math. Soc. 8 (1995), no. 3, 597–627.

    Article  MATH  MathSciNet  Google Scholar 

  23. R. Charney, M. W. Davis; Finite K(π, 1)’s for Artin groups. Prospects in topology (Princeton, NJ, 1994), 110–124, Ann. of Math. Stud. 138, Princeton Univ. Press, Princeton, NJ, 1995.

    Google Scholar 

  24. R. Charney, D. Peifer; The K(π, 1)-conjecture for the affine braid groups. Comment. Math. Helv. 78 (2003), no. 3, 584–600.

    Article  MATH  MathSciNet  Google Scholar 

  25. R. Charney, J. Meier, K. Whittlesey; Bestvina’s normal form complex and the homology of Garside groups. Geom. Dedicata 105 (2004), 171–188.

    Article  MATH  MathSciNet  Google Scholar 

  26. D. C. Cohen, P. Orlik; Arrangements and local systems. Math. Res. Lett. 7 (2000), no. 2–3, 299–316.

    MATH  MathSciNet  Google Scholar 

  27. D. C. Cohen, P. Orlik; Some cyclic covers of complements of arrangements. Topology Appl. 118 (2002), no. 1–2, 3–15.

    Article  MATH  MathSciNet  Google Scholar 

  28. P. Dehornoy; Groupes de Garside. Ann. Sci. école Norm. Sup. (4) 35 (2002), no. 2, 267–306.

    MathSciNet  Google Scholar 

  29. P. Deligne; Les immeubles des groupes de tresses généralisés. Invent. Math. 17 (1972), 273–302.

    Article  MATH  MathSciNet  Google Scholar 

  30. G. Denham; The Orlik-Solomon complex and Milnor fibre homology. Topology Appl. 118 (2002), no. 1–2, 45–63.

    Article  MATH  MathSciNet  Google Scholar 

  31. E. Delucchi; Topology and combinatorics of arrangement covers and of nested set complexes. Ph.D. thesis, ETH Zurich, 2006.

    Google Scholar 

  32. E. Delucchi; Shelling-type ordering of regular CW-complexes and acyclic matchings for the Salvetti complex. Int. Math. Res. Not. 2008, no. 6, Art. ID rnm167, 39 pp.

    Google Scholar 

  33. E. Delucchi, S. Settepanella; Combinatorial polar orderings and follow-up arrangements. ArXiv:0711.1517v1. To appear in Advances in Applied Mathematics.

    Google Scholar 

  34. A. Dimca, S. Papadima; Hypersurface complements, Milnor fibers and higher homotopy groups of arrangements. Ann. of Math. (2) 158 (2003), no. 2, 473–507.

    Article  MathSciNet  Google Scholar 

  35. P. H. Edelman; A partial order on the regions ofn dissected by hyperplanes. Trans. Amer. Math. Soc. 283 (1984), no. 2, 617–631.

    Article  MATH  MathSciNet  Google Scholar 

  36. P. Edelman, V. Reiner; Not all free arrangements are K(π, 1). Bull. Amer. Math. Soc. (N.S.) 32 (1995), no. 1, 61–65.

    Article  MATH  MathSciNet  Google Scholar 

  37. M. Falk, R. Randell; The lower central series of a fiber-type arrangement. Invent. Math. 82 (1985), no. 1, 77–88.

    Article  MATH  MathSciNet  Google Scholar 

  38. M. Falk, R. Randell; On the homotopy theory of arrangements. Complex analytic singularities, 101–124. In: Adv. Stud. Pure Math., 8, North-Holland, Amsterdam, 1987.

    Google Scholar 

  39. M. Falk, R. Randell; On the homotopy theory of arrangements. II. Arrangements Tokyo 1998, 93–125. In: Adv. Stud. Pure Math., 27, Kinokuniya, Tokyo, 2000.

    Google Scholar 

  40. P. Gabriel, M. Zisman; Calculus of fractions and homotopy theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35. Springer Verlag, New York 1967.

    Google Scholar 

  41. F. A. Garside; The braid group and other groups. Quart. J. Math. Oxford Ser. (2) 20 (1969), 235–254.

    Article  MathSciNet  Google Scholar 

  42. P. G. Goerss, J. F. Jardine; Simplicial homotopy theory. Progress in Mathematics 174. Birkhäuser Verlag, Basel, 1999.

    Google Scholar 

  43. M. Gromov; Hyperbolic groups, in “Essays in Group Theory”, ed. by S. M. Gersten, M. S. R. I. Publ. 8, Springer Verlag, New York 1987, 75–264.

    Google Scholar 

  44. P. J. Higgins; Notes on categories and groupoids. Van Nostrand Reinhold Mathematical Studies 32, Van Nostrand Reinhold, London-New York-Melbourne 1971.

    Google Scholar 

  45. J. Hollender, R. M. Vogt; Modules of topological spaces, applications to homotopy limits and E structures. Arch. Math. 59 (1992), no. 2, 115–129.

    Article  MATH  MathSciNet  Google Scholar 

  46. D. N. Kozlov; A comparison of Vassiliev and Ziegler-Živaljević models for homotopy types of subspace arrangements. Topology Appl. 126 (2002), no. 1–2, 119–129.

    Article  MATH  MathSciNet  Google Scholar 

  47. D. N. Kozlov; Combinatorial algebraic topology. Algorithms and Computation in Mathematics 21. Springer, Berlin, 2008.

    Google Scholar 

  48. M. Jambu, L. Paris; Combinatorics of inductively factored arrangements. European J. Combin. 16 (1995), no. 3, 267–292.

    Article  MATH  MathSciNet  Google Scholar 

  49. S. Mac Lane; Categories for the working mathematician. Graduate Texts in Mathematics 5. Springer Verlag, New York, 1998.

    Google Scholar 

  50. D. Margalit, J. McCammond; Geometric presentation s for the pure braid group. To appear in Journal of Knot Theory and its Ramifications. ArXiv:math/0603204v1

    Google Scholar 

  51. J. McCammond; An introduction to Garside structures. Preprint available at http://www.math.ucsb.edu/%7Ejon.mccammond/papers/index.html

    Google Scholar 

  52. G. Moussong; Hyperbolic Coxeter groups. Ph.D. thesis, The Ohio State University, 1988.

    Google Scholar 

  53. T. Nakamura; A note on the K(π, 1)-property of the orbit space of the unitary reflection group G(m,l,n). Sci. Papers College of Arts and Sciences, Univ. Tokio 33 (1983), 1–6.

    MATH  Google Scholar 

  54. C. Okonek; Das K(π, 1)-Problem für die affinen Wurzelsysteme vom Typ A n ,C n . Math. Z. 168 (1979), no. 2, 143–148.

    Article  MATH  MathSciNet  Google Scholar 

  55. P. Orlik, L. Solomon; Unitary reflection groups and cohomology. Invent. Math. 59 (1980), no. 1, 77–94.

    Article  MATH  MathSciNet  Google Scholar 

  56. P. Orlik, H. Terao; Arrangements of Hyperplanes. Grundlehren der Mathematischen Wissenschaften 300, Springer, Berlin 1992.

    Google Scholar 

  57. S. Papadima, A. Suciu; Higher homotopy groups of complements of hyperplane arrangements. Advances in Math. 165 (2002), no. 1, 71–100.

    Article  MATH  MathSciNet  Google Scholar 

  58. S. Papadima, A. Suciu; The spectral sequence of an equivariant chain complex and homology with local coefficients. ArXiv:0708.4262.

    Google Scholar 

  59. L. Paris; The covers of a complexified real arrangement of hyperplanes and their fundamental groups. Topology and its Applications 53 (1993), 75–178.

    Article  MATH  MathSciNet  Google Scholar 

  60. L. Paris; Universal cover of Salvetti’s complex and topology of simplicial arrangements of hyperplanes. Trans. Amer. Math. Soc. 340 (1993), no. 1, 149–178.

    Article  MATH  MathSciNet  Google Scholar 

  61. L. Paris; The Deligne complex of a real arrangement of hyperplanes. Nagoya Math. J. 131 (1993), 39–65.

    MATH  MathSciNet  Google Scholar 

  62. L. Paris; Arrangements of hyperplanes with property D. Geom. Dedicata 45 (1993), no. 2, 171–176.

    Article  MATH  MathSciNet  Google Scholar 

  63. D. Quillen; Higher algebraic K-theory. Lecture Notes in Mathematics 341, Springer, Berlin 1973.

    Google Scholar 

  64. R. Randell; Morse theory, Milnor fibers and minimality of hyperplane arrangements. Proc. Amer. Math. Soc. 130 (2002), no. 9, 2737–2743 (electronic).

    Article  MATH  MathSciNet  Google Scholar 

  65. K. Reidemeister; Einführung in die kombinatorische Topologie. Vieweg, Braunschweig (1932). Reprint Chelsea, New York (1950).

    Google Scholar 

  66. V. Reiner; Non-crossing partitions for classical reflection groups. Discrete Math. 177 (1997), no. 1–3, 195–222.

    Article  MATH  MathSciNet  Google Scholar 

  67. M. Salvetti; Topology of the complement of real hyperplanes inn. Invent. math. 88 (1987), 603–608.

    Article  MATH  MathSciNet  Google Scholar 

  68. M. Salvetti; The homotopy type of Artin groups. Math. Res. Lett. 1 (1994), no. 5, 565–577.

    MATH  MathSciNet  Google Scholar 

  69. M. Salvetti; On the homotopy theory of complexes associated to metrical-hemisphere complexes. Discrete Math. 113 (1993), no. 1–3, 155–177.

    Article  MATH  MathSciNet  Google Scholar 

  70. M. Salvetti, S. Settepanella; Discrete Morse theory and minimality of arrangements. Geom. Topol. 11 (2007), 1733–1766.

    Article  MATH  MathSciNet  Google Scholar 

  71. G. Segal; Classifying spaces and spectral sequences. Inst. Hautes Études Sci. Publ. Math. 34 (1968), 105–112.

    Article  MATH  Google Scholar 

  72. G. C. Shephard, J. A. Todd; Finite unitary reflection groups. Can. J. Math. 6 (1954), 274–302.

    MATH  MathSciNet  Google Scholar 

  73. E. H. Spanier; Algebraic topology. Springer Verlag, New York-Berlin, 1981.

    Google Scholar 

  74. A. Suciu; Fundamental groups of line arrangements: Enumerative aspects. In Advances in algebraic geometry motivated by physics. Contemporary Math., vol. 276, A.M.S., Providence, RI, 2001.

    Google Scholar 

  75. R. Stanley; Enumerative combinatorics, Vol. 1. Wadsworth and Brooks/Cole, Monterey, CA, 1986; reprinted as Cambridge Studies in Advanced Mathematics, Vol. 49, Cambridge University Press, Cambridge, 1997.

    MATH  Google Scholar 

  76. H. Terao; Modular elements of lattices and topological fibration. Adv. in Math. 62 (1986) no. 2, 135–154.

    Article  MATH  MathSciNet  Google Scholar 

  77. V. A. Vassiliev; Complements of Discriminants of Smooth Maps: Topology and Applications. Transl. Math. Monographs 98, Amer. Math. Soc., Providence, RI, 1994.

    Google Scholar 

  78. R. M. Vogt; Homotopy limits and colimits. Math. Z. 134 (1973), 11–52.

    Article  MATH  MathSciNet  Google Scholar 

  79. M. Yoshinaga; Hyperplane arrangements and Lefschetz’s hyperplane section theorem. Kodai Math. J. 30 (2007), no. 2, 157–194.

    Article  MATH  MathSciNet  Google Scholar 

  80. M. Yoshinaga; Chamber basis of the Orlik-Solomon algebra and Aomoto complex. ArXiv: math/0703733

    Google Scholar 

  81. V. Welker, G. M. Ziegler, R. T. Živaljević; Homotopy colimits — comparison lemmas for combinatorial applications. J. reine angew. Math. 509 (1999), 117–149.

    MATH  MathSciNet  Google Scholar 

  82. G. M. Ziegler, R. Živaljević; Homotopy types of subspace arrangements via diagrams of spaces. Math. Ann. 295 (1993), no. 3, 527–548.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Delucchi, E. (2009). Combinatorics of Covers of Complexified Hyperplane Arrangements. In: El Zein, F., Suciu, A.I., Tosun, M., Uludağ, A.M., Yuzvinsky, S. (eds) Arrangements, Local Systems and Singularities. Progress in Mathematics, vol 283. Birkhäuser Basel. https://doi.org/10.1007/978-3-0346-0209-9_1

Download citation

Publish with us

Policies and ethics