Advertisement

Lp-Boundedness of Multilinear Pseudo-Differential Operators

  • Viorel Catană
  • Shahla Molahajloo
  • M. W. Wong
Part of the Operator Theory: Advances and Applications book series (OT, volume 205)

Abstract

Results on the L p -boundedness of multilinear pseudo-differential operators are given. The proofs are based on elementary estimates on the multilinear Rihaczek transforms, the multilinear Wigner transforms and the multilinear Weyl transforms.

Keywords

Lp-boundedness multilinear pseudo-differential operators multilinear Rihaczek transforms Hausdorff-Young inequality multilinear Wigner transforms multilinear Weyl transforms 

Mathematics Subject Classification (2000)

47F05 47G30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. Beckner, Inequalities in Fourier analysis, Ann. Math. 102 (1975), 159–182.CrossRefMathSciNetGoogle Scholar
  2. [2]
    Á. Bényi and K.A. Okundjou, Bilinear pseudodifferential operators on modulation spaces, J. Fourier Anal. Appl. 10 (2004), 301–313.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Á. Bényi and K.A. Okundjou, Modulation space estimates for multilinear pseudodifferential operators, Studia Math. 172 (2006), 169–180.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Á. Bényi, K. Gröchenig, C. Heil and K.A. Okundjou, Modulation spaces and a class of bounded multilinear pseudo-differential operators, J. Operator Theory 54 (2005), 389–401.Google Scholar
  5. [5]
    P. Boggiatto, E. Buzano and L. Rodino, Global Hypoellipticity and Spectral Theory, Akademie Verlag, 1996.Google Scholar
  6. [6]
    P. Boggiatto, G. De Donno and A. Oliaro, A class of quadratic time-frequency representations based on the short-time Fourier transform, in Modern Trends in Pseudo-Differential Operators, Editors: J. Toft, M. W. Wong and H. Zhu, Operator Theory: Advances and Applications 172, Birkhäuser, 2007, 235–249Google Scholar
  7. [7]
    P. Boggiatto, G. De Donno and A. Oliaro, A unified point of view on time-frequency representations and pseudo-differential operators, in Pseudo-Differential Operators: Partial Differential Equations and Time-Frequency Analysis, Editors: L. Rodino, B.-W. Schulze and M.W. Wong, Fields Institute Communications 52, American Mathematical Society, 2007, 383–399.Google Scholar
  8. [8]
    L. Cohen, Time-Frequency Analysis, Prentice-Hall, 1995.Google Scholar
  9. [9]
    E. Cordero and K.A. Okundjou, Multilinear localization operators, J. Math. Anal. Appl. 325 (2007), 1103–1116.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    L. Hörmander, The Analysis of Linear Partial Differential Operators III, Springer-Verlag, 1985.Google Scholar
  11. [11]
    J.E. Moyal, Quantum mechanics as a statistical theory, Proc. Cambridge Philos. Soc. 45 1949, 99–124.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    J.J. Kohn and L. Nirenberg, An algebra of pseudo-differential operators, Comm. Pure Appl. Math. 18 1965, 269–305.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    A. Mohammed and M.W. Wong, Rihaczek transforms and pseudo-differential operators, in Pseudo-Differential Operators: Partial Differential Equations and Time-Frequency Analysis, Editors: L. Rodino, B.-W. Schulze and M. W. Wong, Fields Institute Communications 52, American Mathematical Society, 2007, 375–382.Google Scholar
  14. [14]
    A. W. Rihaczek, Signal energy distribution in time and frequency, IEEE Trans. Inform. Theory 14 (1968), 369–374.CrossRefGoogle Scholar
  15. [15]
    E.M. Stein, Introduction to the Theory of Fourier Integrals, Third Edition, Chelsea, 1986.Google Scholar
  16. [17]
    M.W. Wong, Weyl Transforms, Springer-Verlag, 1998.Google Scholar
  17. [18]
    M.W. Wong, An Introduction to Pseudo-Differential Operators, Second Edition, World Scientific, 1999.Google Scholar
  18. [19]
    M.W. Wong, Symmetry-breaking for Wigner transforms and L p-boundedness of Weyl transforms, in Advances in Pseudo-Differential Operators, Editors: R. Ashino, P. Boggiatto and M.W. Wong, Operator Theory: Advances and Applications 155, Birkhäuser, 2004, 107–116.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  • Viorel Catană
    • 1
  • Shahla Molahajloo
    • 2
  • M. W. Wong
    • 2
  1. 1.Department of MathematicsUniversity Polytechnica of BucharestBucharestRomania
  2. 2.Department of Mathematics and StatisticsYork UniversityTorontoCanada

Personalised recommendations