Advertisement

Dirichlet Problems for the Generalized n-Poisson Equation

  • Ü. Aksoy
  • A. O. Çelebi
Part of the Operator Theory: Advances and Applications book series (OT, volume 205)

Abstract

Polyharmonic hybrid Green functions, obtained by convoluting polyharmonic Green and Almansi Green functions, are taken as kernels to define a hierarchy of integral operators. They are used to investigate the solvability of some types of Dirichlet problems for linear complex partial differential equations with leading term as the polyharmonic operator.

Keywords

Dirichlet problem higher-order Poisson equation 

Mathematics Subject Classification (2000)

Primary 31A30 Secondary 31A10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Almansi, Sull’integrazione dell’equazione differenziale Δ2n u=0, Ann. Mat. (3) 2 (1899), 1–59.Google Scholar
  2. [2]
    Ü. Aksoy and A.O. Çelebi, Neumann problem for generalized n-Poisson equation, J. Math. Anal. Appl. 357 (2009), 438–446.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    H. Begehr and T. Vaitekhovich, Iterated Dirichlet problem for the higher order Poisson equation, Le Matematiche XIII (2008), 139–154.MathSciNetGoogle Scholar
  4. [4]
    H. Begehr and T. Vaitekhovich, Green functions in complex plane domains, Uzbek Math. J. 4 (2008), 29–34.Google Scholar
  5. [5]
    H. Begehr, J. Du and Y. Wang, A Dirichlet problem for polyharmonic functions, Ann. Mat. Pure Appl. 187 (2008), 435–457.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    H. Begehr, A particular polyharmonic Dirichlet problem, in: Complex Analysis, Potential Theory, Editors: T. Aliyev Azeroglu and T.M. Tamrazov, World Scientific, 2007, 84–115.Google Scholar
  7. [7]
    H. Begehr and E. Gaertner, A Dirichlet problem for the inhomogeneous polyharmonic equation in the upper half plane, Georg. Math. J. 14 (2007), 33–52.zbMATHMathSciNetGoogle Scholar
  8. [8]
    H. Begehr, T.N.H. Vu and Z. Zhang, Polyharmonic Dirichlet problems, Proc. Steklov Inst. Math. 255 (2006), 13–34.CrossRefMathSciNetGoogle Scholar
  9. [9]
    H. Begehr, Six biharmonic Dirichlet problems in complex analysis, in: Function Spaces in Complex and Clifford Analysis, Natl. Univ. Publ. Hanoi: Hanoi, 2008, 243–252.Google Scholar
  10. [10]
    H. Begehr, Biharmonic Green functions, Le Mathematiche, LXI (2006), 395–405.MathSciNetGoogle Scholar
  11. [11]
    H. Begehr, Hybrid Green functions and related boundary value problems, in Proc. 37th Annual Iranian Math. Conf., 2006, 275–278.Google Scholar
  12. [12]
    H. Begehr, Boundary value problems in complex analysis I, II, Boletin de la Asosiación Matemática Venezolana, XII (2005), 65–85, 217–250.Google Scholar
  13. [13]
    H. Begehr, Boundary value problems for the Bitsadze equation, Memoirs on differential equations and mathematical physics 33 (2004), 5–23.zbMATHMathSciNetGoogle Scholar
  14. [14]
    S.S. Kutateladze, Fundamentals of Functional Analysis, Kluwer Academic Publishers, 1996.Google Scholar
  15. [15]
    T. Vaitsiakhovich, Boundary Value Problems for Complex Partial Differential Equations in a Ring Domain, Ph.D. Thesis, Freie Universität Berlin, 2008.Google Scholar
  16. [16]
    I.N. Vekua, Generalized Analytic Functions, Pergamon Press, 1962.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  • Ü. Aksoy
    • 1
  • A. O. Çelebi
    • 2
  1. 1.Department of MathematicsAtilim UniversityAnkaraTurkey
  2. 2.Department of MathematicsYeditepe UniversityIstanbulTurkey

Personalised recommendations