Dirichlet Problems for Inhomogeneous Complex Mixed-Partial Differential Equations of Higher order in the Unit Disc: New View

  • H. Begehr
  • Zhihua Du
  • Ning Wang
Part of the Operator Theory: Advances and Applications book series (OT, volume 205)


In this paper, we discuss some Dirichlet problems for inhomogeneous complex mixed-partial differential equations of higher order in the unit disc. Using higher-order Pompeiu operators T m,n, we give some special solutions for the inhomogeneous equations. The solutions of homogeneous equations are given on the basis of decompositions of polyanalytic and polyharmonic functions. Combining the solutions of the homogeneous equations and special solutions, we obtain all solutions of the inhomogeneous equations.


Dirichlet problems higher order Pompeiu operators higher-order Poisson kernels decomposition polyanalytic functions polyharmonic functions inhomogeneous equations unit disc 

Mathematics Subject Classification (2000)

Primary 30G30 Secondary 45E05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. Aronszajn, T. Cresse and L. Lipkin, Polyharmonic Functions, Oxford University Press, 1983.Google Scholar
  2. [2]
    M. B. Balk, Polyanalytic Functions, Akademie Verlag, 1992.Google Scholar
  3. [3]
    H. Begehr, Boundary value problems in complex analysis I; II, Bol. Asco. Mat. Venez. 12 (2005), 65–85; 217–250.zbMATHMathSciNetGoogle Scholar
  4. [4]
    H. Begehr, Dirichlet problems for the biharmonic equations, Gen. Math. 13(2005), 65–72.zbMATHMathSciNetGoogle Scholar
  5. [5]
    H. Begehr, Six biharmonic Dirichlet problems in complex analysis, in Function Spaces in Complex and Clifford Analysis, Editors: H. S. Lee and W. Tutschke, National Univ. Publ. Hanoi, 2008, 243–252.Google Scholar
  6. [6]
    H. Begehr, Biharmonic Green functions, Le Matematiche 61(2006), 395–405.zbMATHMathSciNetGoogle Scholar
  7. [7]
    H. Begehr, A particular polyharmonic Dirichlet problem, in Complex Analysis, Potential Theory, Editors: T. Aliev Azeroglu and P. M. Tamrazov, World Scientific, 2007, 84–115.Google Scholar
  8. [8]
    H. Begehr, J. Du and Y. Wang, A Dirichlet problem for polyharmonic functions, Ann. Mat. Pura Appl. 187(4) (2008), 435–457.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    H. Begehr and E. Gaertner, A Dirichlet problem for the inhomogeneneous polyharmonic equations in the upper half plane, Georgian Math. J. 14(2007), 33–52.zbMATHMathSciNetGoogle Scholar
  10. [10]
    H. Begehr and G. N. Hile, A hierarchy of integral operators, Rocky Mountains J. Math. 27(1997), 669–706.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    H. Begehr, T. N. H. Vu and Z. Zhang, Polyharmonic Dirichlet problems, Proc. Steklov Inst. Math. 255(2006), 13–34.CrossRefMathSciNetGoogle Scholar
  12. [12]
    H. Begehr and Y. Wang, A new approach for solving a Dirichlet problem for polyharmonic function, Complex Var. Elliptic Equ. 52(2007), 907–920.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    P. Burgatti, Sulla funzionni analitiche d’ordini n, Boll. Unione Mat. Ital. 1 (1922), 8–12.Google Scholar
  14. [14]
    A. Calderon and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88(1952), 85–139.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    J. Du and Y. Wang, On boundary value problem of polyanalytic functions on the real axis, Complex Variables 48(2003), 527–542.zbMATHMathSciNetGoogle Scholar
  16. [16]
    J. Du and Y. Wang, Riemann boundary value problem of polyanalytic function and metaanalytic functions on a closed curve, Complex Variables 50(2005), 521–533.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [18]
    B. F. Fatulaev, The main Haseman type boundary value problem for metaanalytic function in the case of circular domains, Math. Model. Anal. 6(2001), 68–76.zbMATHMathSciNetGoogle Scholar
  18. [19]
    E. Gaertner, Basic Complex Boundary Value Problems in The Upper Half Plane, Doctoral Dissertation, Freie Universität Berlin, 2006. Scholar
  19. [20]
    F. D. Gakhov, Boundary Value Problems, Second Edition, Dover, 1990.Google Scholar
  20. [21]
    E. Goursat, Sur l’équation ΔΔu=0, Bull. Soc. Math. France 26(1898), 236–237.zbMATHMathSciNetGoogle Scholar
  21. [22]
    A. Kumar and R. Prakash, Iterated boundary value problems for the polyanalytic equation, Complex Var. Elliptic Equ. 52(2007), 921–932.zbMATHCrossRefMathSciNetGoogle Scholar
  22. [23]
    J. Lu, Boundary Value Problems for Analytic Functions, World Scientific, 1993.Google Scholar
  23. [24]
    I. N. Muskhelishvili, Singular Integral Equations, Second Edition, Dover, 1992.Google Scholar
  24. [25]
    E. M. Stein and R. Shakarchi, Complex Analysis, Princeton University Press, 2003.Google Scholar
  25. [26]
    N. Teodorescu, La Derivée Aréolaire et ses Applications á la Physique Mathématique, Gauthier-Villars, Paris, 1931.Google Scholar
  26. [27]
    I. N. Vekua, Generalized Analytic Functions, Pergamon, 1962.Google Scholar
  27. [28]
    I. N. Vekua, On one method of solving the first biharmonic boundary value problem and the Dirichlet problem, Amer. Math. Soc. Transl. (2) 104(1976), 104–111.Google Scholar
  28. [29]
    Y. Wang and J. Du, On Riemann boundary value problem of polyanalytic functions on the real axis, Acta Math. Sci. 24B(2004), 663–671.MathSciNetGoogle Scholar
  29. [30]
    Y. Wang and J. Du, Hilbert boundary value problem of polyanalytic functions on the unit curcumference, Complex Var. Elliptic Equ. 51(2006), 923–943.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  • H. Begehr
    • 1
  • Zhihua Du
    • 2
  • Ning Wang
    • 3
  1. 1.Institute of MathematicsFreie Universität BerlinBerlinGermany
  2. 2.Department of MathematicsJinan UniversityGuangzhouChina
  3. 3.School of Mathematics and StatisticsWuhan UniversityWuhanChina

Personalised recommendations