Skip to main content

The Stockwell Transform in Studying the Dynamics of Brain Functions

  • Conference paper

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 205))

Abstract

The dynamics of brain functional activities make time-frequency analysis a powerful tool in revealing its neuronal mechanisms. In this paper, we extend the definition of several widely used measures in spectral analysis, including the power spectral density function, coherence function and phaselocking value, from the classic Fourier domain to the time-frequency plane using the Stockwell transform. The comparisons between the Stockwell-based measures and the Morlet wavelet-based measures are addressed from both theoretical and numerical perspectives. The Stockwell approach has advantages over the Morlet wavelet approach in terms of easy interpretation and fast computation. A magnetoencephalography study using the Stockwell analysis reveals interesting temporal interaction between contralateral and ipsilateral motor cortices under the multi-source interference task.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. S. Bendal and A. G. Piersol, Random Data: Analysis and Measurement Procedures, 2nd Edition, John Wiley, 1986.

    Google Scholar 

  2. G. Bush and L. M. Shin, The multi-source interference task: an fMRI task that reliably activates the cingulo-frontal-parietal cognitive/attention network, Nat. Protoc. 1 (1) (2006), 308–313.

    Article  Google Scholar 

  3. G. Bush, T. J. Spencer, J. Holmes, L. M. Shin, E. M. Valera, L. J. Seidman, N. Makris, C. Surman, M. Aleardi, E. Mick and J. Biederman, Functional magnetic resonance imaging of methylphenidate and placebo in attention-deficit/hyperactivity disorder during the multi-source interference task, Arch Gen Psychigtry 65 (1) (2008) 102–114.

    Article  Google Scholar 

  4. G. Buzsaki, Rhythms of the Brain, Oxford University Press, 2006.

    Google Scholar 

  5. D. Cheyne, A. C. Bostan, W. Gaetz and E. W. Pang, Event-related beamforming: a robust method for presurgical functional mapping using MEG, Clin. Neurophysiol. 118 (8) (2007), 1691–1704.

    Article  Google Scholar 

  6. L. Cohen, Time-Frequency Analysis, Prentice-Hall, 1995.

    Google Scholar 

  7. I. Daubechies, Ten Lectures on Wavelets, SIAM, 1992.

    Google Scholar 

  8. M. Ding, S. L. Bressler, W. Yang, H. Liang, Short-window spectral analysis of cortical event-related potentials by adaptive multivariate autoregressive modeling: data preprocessing, model validation, and variability assessment, Biol. Cybern. 83 (2000), 35–45.

    Article  MATH  Google Scholar 

  9. B. Efron, The Jackknife, the Bootstrap, and Other Resampling Plans, Sixth Printing, SIAM, 1994.

    Google Scholar 

  10. P. C. Gibson, M. P. Lamoureux and G. F. Margrave, Stockwell and wavelet transforms, J. Fourier Anal. and Appl. 12 (2006), 713–721.

    Article  MATH  MathSciNet  Google Scholar 

  11. B. G. Goodyear, H. Zhu, R. A. Brown and J. R. Mitchell, Removal of phase artifacts from fMRI data using a Stockwell transform filter improves brain activity detection, Magn. Reson. Med. 51 (2004), 16–21.

    Article  Google Scholar 

  12. A. Grossmann, J. Morlet and T. Paul, Transforms associated to square integrable representations: general results, J. Math. Phys. 26 (1985), 2473–2479.

    Article  MATH  MathSciNet  Google Scholar 

  13. K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser, 2001.

    Google Scholar 

  14. Q. Guo, S. Molahajloo and M. W. Wong, Modified Stockwell transforms and time-frequency analysis in New Developments in Pseudo-Differential Operators, Birkhäuser, 2009, 275–285.

    Google Scholar 

  15. Q. Guo and M. W. Wong, Modified Stockwell Transforms, Memorie della Accademia delle Scienze di Torino, Classe di Scienze, Fische, Matemiche e Naturali, Serie V 32, 2008.

    Google Scholar 

  16. K. Keissar, L. R. Davrath and S. Akselrod, Time-Frequency Wavelet Transform Coherence of cardio-respiratory signals during exercise, Computers in Cardiology 33 (2006), 733–736.

    Google Scholar 

  17. J. P. Lachaux, A. Lutz, D. Rudrauf, D. Cosmelli, M. Le Van Quyen, J. Martinerie and F. Varela, Estimating the time-course of coherence between single-trial brain signals: an introduction to wavelet coherence, Neurophysiol. Clin 62 (3) (2002), 157–174.

    Article  Google Scholar 

  18. J. P. Lachaux, E. Rodriguez, M. Le Van Quyen, A. Lutz, J. Martinerie and F. J. Varela, Studying single-trials of phase synchronous activity in the brain, Int. J. Bifur. Chaos 10 (2000), 2429–2439.

    Google Scholar 

  19. J. P. Lachaux, E. Rodriguez, J. Martinerie and F. J. Varela, Measuring phase synchrony in brain signals, Hum. Brain Map. 8 (4) (1999), 194–208.

    Article  Google Scholar 

  20. L. Lee, M. H. Lee and A. Mechelli, The functional brain connectivity workshop: report and commentary, Comput. Neural Syst. 14 (2003), R5–R15.

    Article  Google Scholar 

  21. M. Le Van Quyen, J. Foucher, J. Lachaux, E. Rodriguez, A. Lutz, J. Martinerie and F. J. Varela, Comparison of Hilbert transform and wavelet methods for the analysis of neuronal synchrony, J. Neuroscience Methods 111 (2), (2001), 83–98.

    Article  Google Scholar 

  22. X. Li, X. Yao, J. Fox and J. G. Jefferys, Interaction dynamics of neuronal oscillations analysed using wavelet transforms, J. Neuroscience Methods 160 (1) (2007), 178–185.

    Article  Google Scholar 

  23. S. Marple, Digital Spectra Analysis with Applications, Prentice-Hall, 1987.

    Google Scholar 

  24. C. R. Pinnegar, Polalization analysis and polarization filtering of three component signals with the time-frequency S-transform, in Geophys. J. Int. 165 (2) (2006), 596–606.

    Article  Google Scholar 

  25. B. Polloka and et al., The cerebral oscillatory network associated with auditorily paced finger movements, Neuro Image 24 (3) (2005), 646–655.

    Google Scholar 

  26. P. Sauseng and W. Klimesch, What does phase information of oscillatory brain activity tell us about cognitive processes?, Neuroscience Biobehavioral Rev. 32 (5) (2008), 1001–1013.

    Article  Google Scholar 

  27. R. G. Stockwell, L. Mansinha and R. P. Lowe, Localization of the complex spectrum: the S transform, IEEE Trans Signal Proc. 44 (4) (1996), 998–1001.

    Article  Google Scholar 

  28. H. Zhu, B. G. Goodyear, M. L. Lauzon, R. A. Brown, G. S. Mayer, A. G. Law, L. Mansinha and J. R. Mitchell, A new local multiscale Fourier analysis for MRI, in Med. Phys. 30 (2003), 1134–1141.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Liu, C., Gaetz, W., Zhu, H. (2009). The Stockwell Transform in Studying the Dynamics of Brain Functions. In: Schulze, BW., Wong, M.W. (eds) Pseudo-Differential Operators: Complex Analysis and Partial Differential Equations. Operator Theory: Advances and Applications, vol 205. Birkhäuser Basel. https://doi.org/10.1007/978-3-0346-0198-6_17

Download citation

Publish with us

Policies and ethics