Skip to main content

Regional predisposition to atherosclerosis – An interplay between local hemodynamics, endothelial cells and resident intimal dendritic cells

  • Chapter
  • First Online:
Endothelial Dysfunction and Inflammation

Part of the book series: Progress in Inflammation Research ((PIR))

  • 1103 Accesses

Abstract

Atherosclerosis develops in regions of the arterial tree with disturbed hemodynamics, but the underlying mechanisms of regional susceptibility to atherosclerosis are not fully understood. In this review, we summarize studies on intimal gene expression and cellular composition in atherosclerosis-susceptible regions of the normal mouse aorta, and discuss the implications to atherogenesis. Low-grade inflammation and accumulation of bone marrow-derived subendothelial resident intimal dendritic cells (RIDC) are unique features of atherosclerosis-susceptible regions. Upon induction of hypercholesterolemia, the RIDC rapidly accumulate intracellular lipid and become the initial foam cells of nascent atherosclerotic lesions, a step that precedes accelerated monocyte recruitment. Thus, unique regional intimal microenvironments established in the normal aorta play key roles in atherogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gimbrone MA Jr, Cybulsky MI, Kume N, Collins T, Resnick N (1995) Vascular endothelium. An integrator of pathophysiological stimuli in atherogenesis. Ann N Y Acad Sci 748: 122–131

    Article  PubMed  CAS  Google Scholar 

  2. Pober JS, Cotran RS (1990) Cytokines and endothelial cell biology. Physiol Rev 70: 427–451

    PubMed  CAS  Google Scholar 

  3. Cybulsky MI, Gimbrone MA Jr (1991) Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 251: 788–791

    Article  PubMed  CAS  Google Scholar 

  4. Cybulsky MI (2007) Endothelium and the initiation of atherosclerosis. In: V Fuster, EJ Topol, EG Nabel (eds): Endothelial Biomedicine. Cambridge University Press, Cambridge, 1214–1225

    Chapter  Google Scholar 

  5. Davies PF (2009) Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med 6: 16–26

    Article  PubMed  CAS  Google Scholar 

  6. Iiyama K, Hajra L, Iiyama M, Li H, DiChiara M, Medoff BD, Cybulsky MI (1999) Patterns of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression in rabbit and mouse atherosclerotic lesions and at sites predisposed to lesion formation. Circ Res 85: 199–207

    PubMed  CAS  Google Scholar 

  7. Cybulsky MI, Fries JW, Williams AJ, Sultan P, Eddy R, Byers M, Shows T, Gimbrone MA Jr, Collins T (1991) Gene structure, chromosomal location, and basis for alternative mRNA splicing of the human VCAM1 gene. Proc Natl Acad Sci USA 88: 7859–7863

    Article  PubMed  CAS  Google Scholar 

  8. Cybulsky MI, Allan-Motamed M, Collins T (1993) Structure of the murine VCAM1 gene. Genomics 18: 387–391

    Article  PubMed  CAS  Google Scholar 

  9. Iademarco MF, McQuillan JJ, Rosen GD, Dean DC (1992) Characterization of the promoter for vascular cell adhesion molecule-1 (VCAM-1). J Biol Chem 267: 16323–16329

    PubMed  CAS  Google Scholar 

  10. Neish AS, Williams AJ, Palmer HJ, Whitley MZ, Collins T (1992) Functional analysis of the human vascular cell adhesion molecule 1 promoter. J Exp Med 176: 1583–1593

    Article  PubMed  CAS  Google Scholar 

  11. Perkins ND (2007) Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 8: 49–62

    Article  PubMed  CAS  Google Scholar 

  12. Hajra L, Evans AI, Chen M, Hyduk SJ, Collins T, Cybulsky MI (2000) The NF-kappa B signal transduction pathway in aortic endothelial cells is primed for activation in regions predisposed to atherosclerotic lesion formation. Proc Natl Acad Sci USA 97: 9052–9057

    Article  PubMed  CAS  Google Scholar 

  13. Won D, Zhu SN, Chen M, Teichert AM, Fish JE, Matouk CC, Bonert M, Ojha M, Marsden PA, Cybulsky MI (2007) Relative reduction of endothelial nitric-oxide synthase expression and transcription in atherosclerosis-prone regions of the mouse aorta and in an in vitro model of disturbed flow. Am J Pathol 171: 1691–1704

    Article  PubMed  CAS  Google Scholar 

  14. Parmar KM, Larman HB, Dai G, Zhang Y, Wang ET, Moorthy SN, Kratz JR, Lin Z, Jain MK, Gimbrone MA Jr et al (2006) Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2. J Clin Invest 116: 49–58

    Article  PubMed  CAS  Google Scholar 

  15. Passerini AG, Polacek DC, Shi C, Francesco NM, Manduchi E, Grant GR, Pritchard WF, Powell S, Chang GY, Stoeckert CJ Jr et al (2004) Coexisting proinflammatory and antioxidative endothelial transcription profiles in a disturbed flow region of the adult porcine aorta. Proc Natl Acad Sci USA 101: 2482–2487

    Article  PubMed  CAS  Google Scholar 

  16. Millonig G, Schwentner C, Mueller P, Mayerl C, Wick G (2001) The vascular-associated lymphoid tissue: A new site of local immunity. Curr Opin Lipidol 12: 547–553

    Article  PubMed  CAS  Google Scholar 

  17. Jongstra-Bilen J, Haidari M, Zhu SN, Chen M, Guha D, Cybulsky MI (2006) Lowgrade chronic inflammation in regions of the normal mouse arterial intima predisposed to atherosclerosis. J Exp Med 203: 2073–2083

    Article  PubMed  CAS  Google Scholar 

  18. Millonig G, Niederegger H, Rabl W, Hochleitner BW, Hoefer D, Romani N, Wick G (2001) Network of vascular-associated dendritic cells in intima of healthy young individuals. Arterioscler Thromb Vasc Biol 21: 503–508

    PubMed  CAS  Google Scholar 

  19. Bobryshev YV, Lord RS (1995) Ultrastructural recognition of cells with dendritic cell morphology in human aortic intima. Contacting interactions of vascular dendritic cells in athero-resistant and athero-prone areas of the normal aorta. Arch Histol Cytol 58: 307–322

    Article  PubMed  CAS  Google Scholar 

  20. Paulson KE, Zhu SN, Chen M, Nurmohamed S, Jongstra-Bilen J, Cybulsky MI (2010) Resident intimal dendritic cells accumulate lipid and contribute to the initiation of atherosclerosis. Circ Res 106: 383–390

    Article  PubMed  CAS  Google Scholar 

  21. Zhu SN, Chen M, Jongstra-Bilen J, Cybulsky MI (2009) GM-CSF regulates intimal cell proliferation in nascent atherosclerotic lesions. J Exp Med 206: 2141–2149

    Article  PubMed  CAS  Google Scholar 

  22. Liu P, Yu YR, Spencer JA, Johnson AE, Vallanat CT, Fong AM, Patterson C, Patel DD (2008) CX3CR1 deficiency impairs dendritic cell accumulation in arterial intima and reduces atherosclerotic burden. Arterioscler Thromb Vasc Biol 28: 243–250

    Article  PubMed  CAS  Google Scholar 

  23. Mullick AE, Soldau K, Kiosses WB, Bell TA, 3rd, Tobias PS, Curtiss LK (2008) Increased endothelial expression of Toll-like receptor 2 at sites of disturbed blood flow exacerbates early atherogenic events. J Exp Med 205: 373–383

    Article  PubMed  CAS  Google Scholar 

  24. Choi JH, Do Y, Cheong C, Koh H, Boscardin SB, Oh YS, Bozzacco L, Trumpfheller C, Park CG, Steinman RM (2009) Identification of antigen-presenting dendritic cells in mouse aorta and cardiac valves. J Exp Med 206: 497–505

    Article  PubMed  CAS  Google Scholar 

  25. Smith JD, James D, Dansky HM, Wittkowski KM, Moore KJ, Breslow JL (2003) In silico quantitative trait locus map for atherosclerosis susceptibility in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 23: 117–122

    Article  PubMed  CAS  Google Scholar 

  26. Tian J, Pei H, James JC, Li Y, Matsumoto AH, Helm GA, Shi W (2005) Circulating adhesion molecules in apoE-deficient mouse strains with different atherosclerosis susceptibility. Biochem Biophys Res Commun 329: 1102–1107

    Article  PubMed  CAS  Google Scholar 

  27. Shi W, Haberland ME, Jien ML, Shih DM, Lusis AJ (2000) Endothelial responses to oxidized lipoproteins determine genetic susceptibility to atherosclerosis in mice. Circulation 102: 75–81

    PubMed  CAS  Google Scholar 

  28. Shi W, Wang NJ, Shih DM, Sun VZ, Wang X, Lusis AJ (2000) Determinants of atherosclerosis susceptibility in the C3H and C57BL/6 mouse model: Evidence for involvement of endothelial cells but not blood cells or cholesterol metabolism. Circ Res 86: 1078–1084

    PubMed  CAS  Google Scholar 

  29. Grage-Griebenow E, Flad HD, Ernst M (2001) Heterogeneity of human peripheral blood monocyte subsets. J Leukoc Biol 69: 11–20

    PubMed  CAS  Google Scholar 

  30. Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19: 71–82

    Article  PubMed  CAS  Google Scholar 

  31. Sunderkotter C, Nikolic T, Dillon MJ, Van Rooijen N, Stehling M, Drevets DA, Leenen PJ (2004) Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol 172: 4410–4417

    PubMed  Google Scholar 

  32. Ziegler-Heitbrock L (2007) The CD14+ CD16+ blood monocytes: Their role in infection and inflammation. J Leukoc Biol 81: 584–592

    Article  PubMed  CAS  Google Scholar 

  33. Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O, Kayal S, Sarnacki S, Cumano A, Lauvau G, Geissmann F (2007) Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317: 666–670

    Article  PubMed  CAS  Google Scholar 

  34. Mosig S, Rennert K, Krause S, Kzhyshkowska J, Neunubel K, Heller R, Funke H (2009) Different functions of monocyte subsets in familial hypercholesterolemia: potential function of CD14+ CD16+ monocytes in detoxification of oxidized LDL. FASEB J 23: 866–874

    Article  PubMed  CAS  Google Scholar 

  35. Ingersoll MA, Spanbroek R, Lottaz C, Gautier EL, Frankenberger M, Hoffmann R, Lang R, Haniffa M, Collin M, Tacke F et al (2010) Comparison of gene expression profiles between human and mouse monocyte subsets. Blood 115: e10–19

    Article  PubMed  CAS  Google Scholar 

  36. Cybulsky MI, Iiyama K, Li H, Zhu S, Chen M, Iiyama M, Davis V, Gutierrez-Ramos JC, Connelly PW, Milstone DS (2001) A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest 107: 1255–1262

    Article  PubMed  CAS  Google Scholar 

  37. Dansky HM, Barlow CB, Lominska C, Sikes JL, Kao C, Weinsaft J, Cybulsky MI, Smith JD (2001) Adhesion of monocytes to arterial endothelium and initiation of atherosclerosis are critically dependent on vascular cell adhesion molecule-1 gene dosage. Arterioscler Thromb Vasc Biol 21: 1662–1667

    Article  PubMed  CAS  Google Scholar 

  38. Nakashima Y, Raines EW, Plump AS, Breslow JL, Ross R (1998) Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the ApoEdeficient mouse. Arterioscler Thromb Vasc Biol 18: 842–851

    PubMed  CAS  Google Scholar 

  39. Nageh MF, Sandberg ET, Marotti KR, Lin AH, Melchior EP, Bullard DC, Beaudet AL (1997) Deficiency of inflammatory cell adhesion molecules protects against atherosclerosis in mice. Arterioscler Thromb Vasc Biol 17: 1517–1520

    PubMed  CAS  Google Scholar 

  40. Wu H, Gower RM, Wang H, Perrard XY, Ma R, Bullard DC, Burns AR, Paul A, Smith CW, Simon SI et al (2009) Functional role of CD11c+ monocytes in atherogenesis associated with hypercholesterolemia. Circulation 119: 2708–2717

    Article  PubMed  CAS  Google Scholar 

  41. Sadhu C, Ting HJ, Lipsky B, Hensley K, Garcia-Martinez LF, Simon SI, Staunton DE (2007) CD11c/CD18: Novel ligands and a role in delayed-type hypersensitivity. J Leukoc Biol 81: 1395–1403

    Article  PubMed  CAS  Google Scholar 

  42. Cybulsky MI, Hegele RA (2003) The fractalkine receptor CX3CR1 is a key mediator of atherogenesis. J Clin Invest 111: 1118–1120

    PubMed  CAS  Google Scholar 

  43. Imaizumi T, Yoshida H, Satoh K (2004) Regulation of CX3CL1/fractalkine expression in endothelial cells. J Atheroscler Thromb 11: 15–21

    PubMed  CAS  Google Scholar 

  44. Landsman L, Bar-On L, Zernecke A, Kim KW, Krauthgamer R, Shagdarsuren E, Lira SA, Weissman IL, Weber C, Jung S (2009) CX3CR1 is required for monocyte homeostasis and atherogenesis by promoting cell survival. Blood 113: 963–972

    Article  PubMed  CAS  Google Scholar 

  45. Ancuta P, Rao R, Moses A, Mehle A, Shaw SK, Luscinskas FW, Gabuzda D (2003) Fractalkine preferentially mediates arrest and migration of CD16+ monocytes. J Exp Med 197: 1701–1707

    Article  PubMed  CAS  Google Scholar 

  46. Bogunovic M, Ginhoux F, Helft J, Shang L, Hashimoto D, Greter M, Liu K, Jakubzick C, Ingersoll MA, Leboeuf M et al (2009) Origin of the lamina propria dendritic cell network. Immunity 31: 513–525

    Article  PubMed  CAS  Google Scholar 

  47. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18: 767–811

    Article  PubMed  CAS  Google Scholar 

  48. Bobryshev YV (2000) Dendritic cells and their involvement in atherosclerosis. Curr Opin Lipidol 11: 511–517

    Article  PubMed  CAS  Google Scholar 

  49. Steinman RM, Hawiger D, Nussenzweig MC (2003) Tolerogenic dendritic cells. Annu Rev Immunol 21: 685–711

    Article  PubMed  CAS  Google Scholar 

  50. Niessner A, Weyand CM (2010) Dendritic cells in atherosclerotic disease. Clin Immunol 134: 25–32

    Article  PubMed  CAS  Google Scholar 

  51. Varol C, Vallon-Eberhard A, Elinav E, Aychek T, Shapira Y, Luche H, Fehling HJ, Hardt WD, Shakhar G, Jung S (2009) Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity 31: 502–512

    Article  PubMed  CAS  Google Scholar 

  52. Sung SS, Fu SM, Rose CE Jr, Gaskin F, Ju ST, Beaty SR (2006) A major lung CD103 (alphaE)-beta7 integrin-positive epithelial dendritic cell population expressing Langerin and tight junction proteins. J Immunol 176: 2161–2172

    PubMed  CAS  Google Scholar 

  53. Ohteki T, Tada H, Ishida K, Sato T, Maki C, Yamada T, Hamuro J, Koyasu S (2006) Essential roles of DC-derived IL-15 as a mediator of inflammatory responses in vivo. J Exp Med 203: 2329–2338

    Article  PubMed  CAS  Google Scholar 

  54. Scholz J, Lukacs-Kornek V, Engel DR, Specht S, Kiss E, Eitner F, Floege J, Groene HJ, Kurts C (2008) Renal dendritic cells stimulate IL-10 production and attenuate nephrotoxic nephritis. J Am Soc Nephrol 19: 527–537

    Article  PubMed  CAS  Google Scholar 

  55. van Rijt LS, Jung S, Kleinjan A, Vos N, Willart M, Duez C, Hoogsteden HC, Lambrecht BN (2005) In vivo depletion of lung CD11c+ dendritic cells during allergen challenge abrogates the characteristic features of asthma. J Exp Med 201: 981–991

    Article  PubMed  Google Scholar 

  56. Jung S, Unutmaz D, Wong P, Sano G, De los Santos K, Sparwasser T, Wu S, Vuthoori S, Ko K, Zavala F et al (2002) In vivo depletion of CD11c(+) dendritic cells abrogates priming of CD8(+) T cells by exogenous cell-associated antigens. Immunity 17: 211–220

    Article  PubMed  CAS  Google Scholar 

  57. Naglich JG, Metherall JE, Russell DW, Eidels L (1992) Expression cloning of a diphtheria toxin receptor: Identity with a heparin-binding EGF-like growth factor precursor. Cell 69: 1051–1061

    Article  PubMed  CAS  Google Scholar 

  58. Cybulsky MI, Won D, Haidari M (2004) Leukocyte recruitment to atherosclerotic lesions. Can J Cardiol 20 (Suppl B): 24B–28B

    PubMed  Google Scholar 

  59. Gautier EL, Jakubzick C, Randolph GJ (2009) Regulation of the migration and survival of monocyte subsets by chemokine receptors and its relevance to atherosclerosis. Arterioscler Thromb Vasc Biol 29: 1412–1418

    Article  PubMed  CAS  Google Scholar 

  60. Stoneman V, Braganza D, Figg N, Mercer J, Lang R, Goddard M, Bennett M (2007) Monocyte/macrophage suppression in CD11b diphtheria toxin receptor transgenic mice differentially affects atherogenesis and established plaques. Circ Res 100: 884–893

    Article  PubMed  CAS  Google Scholar 

  61. Williams KJ, Tabas I (1995) The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol 15: 551–561

    PubMed  CAS  Google Scholar 

  62. Skalen K, Gustafsson M, Rydberg EK, Hulten LM, Wiklund O, Innerarity TL, Boren J (2002) Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 417: 750–754

    Article  PubMed  CAS  Google Scholar 

  63. Horiuchi S, Sakamoto Y, Sakai M (2003) Scavenger receptors for oxidized and glycated proteins. Amino Acids 25: 283–292

    Article  PubMed  CAS  Google Scholar 

  64. Sertl K, Takemura T, Tschachler E, Ferrans VJ, Kaliner MA, Shevach EM (1986) Dendritic cells with antigen-presenting capability reside in airway epithelium, lung parenchyma, and visceral pleura. J Exp Med 163: 436–451

    Article  PubMed  CAS  Google Scholar 

  65. Schon-Hegrad MA, Oliver J, McMenamin PG, Holt PG (1991) Studies on the density, distribution, and surface phenotype of intraepithelial class II major histocompatibility complex antigen (Ia)-bearing dendritic cells (DC) in the conducting airways. J Exp Med 173: 1345–1356

    Article  PubMed  CAS  Google Scholar 

  66. Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R, Granucci F, Kraehenbuhl JP, Ricciardi-Castagnoli P (2001) Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2: 361–367

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Basel AG

About this chapter

Cite this chapter

Jongstra-Bilen, J., Cybulsky, M.I. (2010). Regional predisposition to atherosclerosis – An interplay between local hemodynamics, endothelial cells and resident intimal dendritic cells. In: Dauphinee, S., Karsan, A. (eds) Endothelial Dysfunction and Inflammation. Progress in Inflammation Research. Springer, Basel. https://doi.org/10.1007/978-3-0346-0168-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-0346-0168-9_10

  • Published:

  • Publisher Name: Springer, Basel

  • Print ISBN: 978-3-0346-0167-2

  • Online ISBN: 978-3-0346-0168-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics