Skip to main content

Endothelial activation and dysfunction in sepsis

  • Chapter
  • First Online:
Endothelial Dysfunction and Inflammation

Part of the book series: Progress in Inflammation Research ((PIR))

  • 1210 Accesses

Abstract

Severe sepsis is a major cause of morbidity and mortality worldwide. Recent advances in our understanding of the pathophysiology of sepsis have emphasized the pivotal role of the innate immune system in the development of a deleterious host response to bacterial infection. It is now recognized that the endothelium is an important effector cell of the innate immune system. This review examines evidence for endothelial dysfunction in experimental sepsis as manifested by activation of coagulation and fibrinolytic systems, alterations in vasomotor tone, increased permeability, augmented leukocyte adhesion, and enhanced apoptosis. As discussed here, many of these perturbations are observed in patients with severe sepsis, suggesting that endothelial dysfunction is also important clinically and may be an important target for new therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, Reinhart K, Angus DC, Brun-Buisson C, Beale R et al (2008) Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 36: 296–327

    Article  PubMed  Google Scholar 

  2. Rice TW, Bernard GR (2005) Therapeutic intervention and targets for sepsis. Annu Rev Med 56: 225–248

    Article  PubMed  CAS  Google Scholar 

  3. van der Poll T, Opal SM (2008) Host-pathogen interactions in sepsis. Lancet Infect Dis 8: 32–43

    Article  PubMed  Google Scholar 

  4. Castellheim A, Brekke OL, Espevik T, Harboe M, Mollnes TE (2009) Innate immune responses to danger signals in systemic inflammatory response syndrome and sepsis. Scand J Immunol 69: 479–491

    Article  PubMed  CAS  Google Scholar 

  5. Aird WC (2003) The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood 101: 3765–3777

    Article  PubMed  CAS  Google Scholar 

  6. Aird WC (2007) Endothelium as a therapeutic target in sepsis. Curr Drug Targets 8: 501–507

    Article  PubMed  CAS  Google Scholar 

  7. Matsuda N, Hattori Y (2007) Vascular biology in sepsis: Pathophysiological and therapeutic significance of vascular dysfunction. J Smooth Muscle Res 43: 117–137

    Article  PubMed  Google Scholar 

  8. Grandel U, Grimminger F (2003) Endothelial responses to bacterial toxins in sepsis. Crit Rev Immunol 23: 267–299

    Article  PubMed  CAS  Google Scholar 

  9. Minami T, Aird WC (2005) Endothelial cell gene regulation. Trends Cardiovasc Med 15: 174–184

    Article  PubMed  CAS  Google Scholar 

  10. Ye X, Ding J, Zhou X, Chen G, Liu SF (2008) Divergent roles of endothelial NF-kappaB in multiple organ injury and bacterial clearance in mouse models of sepsis. J Exp Med 205: 1303–1315

    Article  PubMed  CAS  Google Scholar 

  11. Bombeli T, Karsan A, Tait JF, Harlan JM (1997) Apoptotic vascular endothelial cells become procoagulant. Blood 89: 2429–2442

    PubMed  CAS  Google Scholar 

  12. Bombeli T, Schwartz BR, Harlan JM (1999) Endothelial cells undergoing apoptosis become proadhesive for non-activated platelets. Blood 93: 3831–3838

    PubMed  CAS  Google Scholar 

  13. Dempfle CE, Wurst M, Smolinski M, Lorenz S, Osika A, Olenik D, Fiedler F, Borggrefe M (2004) Use of soluble fibrin antigen instead of D-dimer as fibrin-related marker may enhance the prognostic power of the ISTH overt DIC score. Thromb Haemost 91: 812–818

    PubMed  CAS  Google Scholar 

  14. Zeerleder S, Hack CE, Wuillemin WA (2005) Disseminated intravascular coagulation in sepsis. Chest 128: 2864–2875

    Article  PubMed  CAS  Google Scholar 

  15. van Hinsbergh VW (2001) The endothelium: Vascular control of haemostasis. Eur J Obstet Gynecol Reprod Biol 95: 198–201

    Article  PubMed  Google Scholar 

  16. Arnout J, Hoylaerts MF, Lijnen HR (2006) Haemostasis. Handb Exp Pharmacol 176 (Pt 2): 1–41

    Article  CAS  Google Scholar 

  17. Levi M, van der Poll T (2008) The role of natural anticoagulants in the pathogenesis and management of systemic activation of coagulation and inflammation in critically ill patients. Semin Thromb Hemost 34: 459–468

    Article  PubMed  CAS  Google Scholar 

  18. Warren BL, Eid A, Singer P, Pillay SS, Carl P, Novak I, Chalupa P, Atherstone A, Penzes I, Kubler A et al (2001) Caring for the critically ill patient. High-dose antithrombin III in severe sepsis: A randomized controlled trial. JAMA 286: 1869–1878

    Article  PubMed  CAS  Google Scholar 

  19. Bernard GR, Vincent JL, Laterre PF, LaRosa SP, Dhainaut JF, Lopez-Rodriguez A, Steingrub JS, Garber GE, Helterbrand JD, Ely EW et al (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 344: 699–709

    Article  PubMed  CAS  Google Scholar 

  20. Abraham E, Reinhart K, Opal S, Demeyer I, Doig C, Rodriguez AL, Beale R, Svoboda P, Laterre PF, Simon S et al (2003) Efficacy and safety of tifacogin (recombinant tissue factor pathway inhibitor) in severe sepsis: A randomized controlled trial. JAMA 290: 238–247

    Article  PubMed  CAS  Google Scholar 

  21. Roemisch J, Gray E, Hoffmann JN, Wiedermann CJ (2002) Antithrombin: A new look at the actions of a serine protease inhibitor. Blood Coagul Fibrinolysis 13: 657–670

    Article  PubMed  CAS  Google Scholar 

  22. Dahlback B, Villoutreix BO (2005) Regulation of blood coagulation by the protein C anticoagulant pathway: Novel insights into structure-function relationships and molecular recognition. Arterioscler Thromb Vasc Biol 25: 1311–1320

    Article  PubMed  Google Scholar 

  23. Griffin JH, Fernandez JA, Gale AJ, Mosnier LO (2007) Activated protein C. J Thromb Haemost 5 Suppl 1: 73–80

    Article  PubMed  CAS  Google Scholar 

  24. Houston G, Cuthbertson BH (2009) Activated protein C for the treatment of severe sepsis. Clin Microbiol Infect 15: 319–324

    Article  PubMed  CAS  Google Scholar 

  25. Abraham E, Laterre PF, Garg R, Levy H, Talwar D, Trzaskoma BL, Francois B, Guy JS, Bruckmann M, Rea-Neto A et al (2005) Drotrecogin alfa (activated) for adults with severe sepsis and a low risk of death. N Engl J Med 353: 1332–1341

    Article  PubMed  CAS  Google Scholar 

  26. Toltl LJ, Swystun LL, Pepler L, Liaw PC (2008) Protective effects of activated protein C in sepsis. Thromb Haemost 100: 582–592

    PubMed  CAS  Google Scholar 

  27. Broze GJ, Jr. (1995) Tissue factor pathway inhibitor and the current concept of blood coagulation. Blood Coagul Fibrinolysis 6 (Suppl 1): S7–13

    Article  PubMed  CAS  Google Scholar 

  28. Osterud B, Bjorklid E (2006) Sources of tissue factor. Semin Thromb Hemost 32: 11–23

    Article  PubMed  Google Scholar 

  29. Raaphorst J, Johan Groeneveld AB, Bossink AW, Erik Hack C (2001) Early inhibition of activated fibrinolysis predicts microbial infection, shock and mortality in febrile medical patients. Thromb Haemost 86: 543–549

    PubMed  CAS  Google Scholar 

  30. Renckens R, Roelofs JJ, Bonta PI, Florquin S, de Vries CJ, Levi M, Carmeliet P, van’t Veer C, van der Poll T (2007) Plasminogen activator inhibitor type 1 is protective during severe Gram-negative pneumonia. Blood 109: 1593–1601

    Article  PubMed  CAS  Google Scholar 

  31. Morel O, Toti F, Hugel B, Bakouboula B, Camoin-Jau L, Dignat-George F, Freyssinet JM (2006) Procoagulant microparticles: Disrupting the vascular homeostasis equation? Arterioscler Thromb Vasc Biol 26: 2594–2604

    Article  PubMed  CAS  Google Scholar 

  32. Piccin A, Murphy WG, Smith OP (2006) Circulating microparticles: Pathophysiology and clinical implications. Blood Rev 21: 157–171

    Article  PubMed  Google Scholar 

  33. Busse R, Fleming I (2006) Vascular endothelium and blood flow. Handb Exp Pharmacol 176 (Pt 2): 43–78

    Article  PubMed  CAS  Google Scholar 

  34. Cauwels A (2007) Nitric oxide in shock. Kidney Int 72: 557–565

    Article  PubMed  CAS  Google Scholar 

  35. Moncada S, Higgs EA (2006) Nitric oxide and the vascular endothelium. Handb Exp Pharmacol 176 (Pt 1): 213–254

    Article  PubMed  Google Scholar 

  36. Fleming I, Busse R (2003) Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol 284: R1–12

    PubMed  CAS  Google Scholar 

  37. Titheradge MA (1999) Nitric oxide in septic shock. Biochim Biophys Acta 1411: 437–455

    Article  PubMed  CAS  Google Scholar 

  38. Lopez A, Lorente JA, Steingrub J, Bakker J, McLuckie A, Willatts S, Brockway M, Anzueto A, Holzapfel L, Breen D et al (2004) Multiple-center, randomized, placebocontrolled, double-blind study of the nitric oxide synthase inhibitor 546C88: Effect on survival in patients with septic shock. Crit Care Med 32: 21–30

    Article  PubMed  CAS  Google Scholar 

  39. Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342: 1334–1349

    Article  PubMed  CAS  Google Scholar 

  40. Kumar P, Shen Q, Pivetti CD, Lee ES, Wu MH, Yuan SY (2009) Molecular mechanisms of endothelial hyperpermeability: Implications in inflammation. Expert Rev Mol Med 11: e19

    Article  PubMed  Google Scholar 

  41. Dauphinee SM, Karsan A (2006) Lipopolysaccharide signaling in endothelial cells. Lab Invest 86: 9–22

    Article  PubMed  CAS  Google Scholar 

  42. Bannerman DD, Goldblum SE (2003) Mechanisms of bacterial lipopolysaccharideinduced endothelial apoptosis. Am J Physiol Lung Cell Mol Physiol 284: L899–914

    PubMed  CAS  Google Scholar 

  43. Bannerman DD, Sathyamoorthy M, Goldblum SE (1998) Bacterial lipopolysaccharide disrupts endothelial monolayer integrity and survival signaling events through caspase cleavage of adherens junction proteins. J Biol Chem 273: 35371–35380

    Article  PubMed  CAS  Google Scholar 

  44. Nagy JA, Dvorak AM, Dvorak HF (2007) VEGF-A and the induction of pathological angiogenesis. Annu Rev Pathol 2: 251–275

    Article  PubMed  CAS  Google Scholar 

  45. Shapiro NI, Yano K, Okada H, Fischer C, Howell M, Spokes KC, Ngo L, Angus DC, Aird WC (2008) A prospective, observational study of soluble FLT-1 and vascular endothelial growth factor in sepsis. Shock 29: 452–457

    Article  PubMed  CAS  Google Scholar 

  46. Yano K, Liaw PC, Mullington JM, Shih SC, Okada H, Bodyak N, Kang PM, Toltl L, Belikoff B, Buras J et al (2006) Vascular endothelial growth factor is an important determinant of sepsis morbidity and mortality. J Exp Med 203: 1447–1458

    Article  PubMed  CAS  Google Scholar 

  47. van der Heijden M, van Nieuw Amerongen GP, Chedamni S, van Hinsbergh VW, Johan Groeneveld AB (2009) The angiopoietin-Tie2 system as a therapeutic target in sepsis and acute lung injury. Expert Opin Ther Targets 13: 39–53

    Article  PubMed  Google Scholar 

  48. Parikh SM, Mammoto T, Schultz A, Yuan HT, Christiani D, Karumanchi SA, Sukhatme VP (2006) Excess circulating angiopoietin-2 may contribute to pulmonary vascular leak in sepsis in humans. PLoS Med 3: e46

    Article  PubMed  Google Scholar 

  49. Witzenbichler B, Westermann D, Knueppel S, Schultheiss HP, Tschope C (2005) Protective role of angiopoietin-1 in endotoxic shock. Circulation 111: 97–105

    Article  PubMed  CAS  Google Scholar 

  50. McCarter SD, Mei SH, Lai PF, Zhang QW, Parker CH, Suen RS, Hood RD, Zhao YD, Deng Y, Han RN et al (2007) Cell-based angiopoietin-1 gene therapy for acute lung injury. Am J Respir Crit Care Med 175: 1014–1026

    Article  PubMed  CAS  Google Scholar 

  51. Giuliano JS Jr, Lahni PM, Harmon K, Wong HR, Doughty LA, Carcillo JA, Zingarelli B, Sukhatme VP, Parikh SM, Wheeler DS (2007) Admission angiopoietin levels in children with septic shock. Shock 28: 650–654

    PubMed  CAS  Google Scholar 

  52. Kranidioti H, Orfanos SE, Vaki I, Kotanidou A, Raftogiannis M, Dimopoulou I, Kotsaki A, Savva A, Papapetropoulos A, Armaganidis A et al (2009) Angiopoietin-2 is increased in septic shock: Evidence for the existence of a circulating factor stimulating its release from human monocytes. Immunol Lett 125: 65–71

    Article  PubMed  CAS  Google Scholar 

  53. Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: The leukocyte adhesion cascade updated. Nat Rev Immunol 7: 678–689

    Article  PubMed  CAS  Google Scholar 

  54. Wagner DD, Frenette PS (2008) The vessel wall and its interactions. Blood 111: 5271–5281

    Article  PubMed  CAS  Google Scholar 

  55. Luster AD, Alon R, von Andrian UH (2005) Immune cell migration in inflammation: Present and future therapeutic targets. Nat Immunol 6: 1182–1190

    Article  PubMed  CAS  Google Scholar 

  56. Alves-Filho JC, de Freitas A, Spiller F, Souto FO, Cunha FQ (2008) The role of neutrophils in severe sepsis. Shock 30 (Suppl 1): 3–9

    Article  PubMed  CAS  Google Scholar 

  57. Etzioni A (2007) Leukocyte adhesion deficiencies: Molecular basis, clinical findings, and therapeutic options. Adv Exp Med Biol 601: 51–60

    Article  PubMed  Google Scholar 

  58. Thomas JR, Harlan JM, Rice CL, Winn RK (1992) Role of leukocyte CD11/CD18 complex in endotoxic and septic shock in rabbits. J Appl Physiol 73: 1510–1516

    PubMed  CAS  Google Scholar 

  59. Matsukawa A, Lukacs NW, Hogaboam CM, Knibbs RN, Bullard DC, Kunkel SL, Stoolman LM (2002) Mice genetically lacking endothelial selectins are resistant to the lethality in septic peritonitis. Exp Mol Pathol 72: 68–76

    Article  PubMed  CAS  Google Scholar 

  60. Cummings CJ, Sessler CN, Beall LD, Fisher BJ, Best AM, Fowler AA 3rd (1997) Soluble E-selectin levels in sepsis and critical illness. Correlation with infection and hemodynamic dysfunction. Am J Respir Crit Care Med 156: 431–437

    PubMed  CAS  Google Scholar 

  61. Kayal S, Jais JP, Aguini N, Chaudiere J, Labrousse J (1998) Elevated circulating E-selectin, intercellular adhesion molecule 1, and von Willebrand factor in patients with severe infection. Am J Respir Crit Care Med 157: 776–784

    PubMed  CAS  Google Scholar 

  62. Meier P, Finch A, Evan G (2000) Apoptosis in development. Nature 407: 796–801

    Article  PubMed  CAS  Google Scholar 

  63. Opferman JT, Korsmeyer SJ (2003) Apoptosis in the development and maintenance of the immune system. Nat Immunol 4: 410–415

    Article  PubMed  CAS  Google Scholar 

  64. Nicholson DW (2000) From bench to clinic with apoptosis-based therapeutic agents. Nature 407: 810–816

    Article  PubMed  CAS  Google Scholar 

  65. Stefanec T (2000) Endothelial apoptosis: Could it have a role in the pathogenesis and treatment of disease? Chest 117: 841–854

    Article  PubMed  CAS  Google Scholar 

  66. Winn RK, Harlan JM (2005) The role of endothelial cell apoptosis in inflammatory and immune diseases. J Thromb Haemost 3: 1815–1824

    Article  PubMed  CAS  Google Scholar 

  67. Savill J, Fadok V (2000) Corpse clearance defines the meaning of cell death. Nature 407: 784–788

    Article  PubMed  CAS  Google Scholar 

  68. Diamant M, Tushuizen ME, Sturk A, Nieuwland R (2004) Cellular microparticles: New players in the field of vascular disease? Eur J Clin Invest 34: 392–401

    Article  PubMed  CAS  Google Scholar 

  69. Horstman LL, Jy W, Jimenez JJ, Ahn YS (2004) Endothelial microparticles as markers of endothelial dysfunction. Front Biosci 9: 1118–1135

    Article  PubMed  CAS  Google Scholar 

  70. Haimovitz-Friedman A, Cordon-Cardo C, Bayoumy S, Garzotto M, McLoughlin M, Gallily R, Edwards CK 3rd, Schuchman EH, Fuks Z, Kolesnick R (1997) Lipopolysaccharide induces disseminated endothelial apoptosis requiring ceramide generation. J Exp Med 186: 1831–1841

    Article  PubMed  CAS  Google Scholar 

  71. Mutunga M, Fulton B, Bullock R, Batchelor A, Gascoigne A, Gillespie JI, Baudouin SV (2001) Circulating endothelial cells in patients with septic shock. Am J Respir Crit Care Med 163: 195–200

    PubMed  CAS  Google Scholar 

  72. Hotchkiss RS, Tinsley KW, Swanson PE, Karl IE (2002) Endothelial cell apoptosis in sepsis. Crit Care Med 30: S225–228

    Article  PubMed  Google Scholar 

  73. Hotchkiss RS, Swanson PE, Freeman BD, Tinsley KW, Cobb JP, Matuschak GM, Buchman TG, Karl IE (1999) Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit Care Med 27: 1230–1251

    Article  PubMed  CAS  Google Scholar 

  74. Joyce DE, Gelbert L, Ciaccia A, DeHoff B, Grinnell BW (2001) Gene expression profile of antithrombotic protein C defines new mechanisms modulating inflammation and apoptosis. J Biol Chem 276: 11199–11203

    Article  PubMed  CAS  Google Scholar 

  75. Riewald M, Petrovan RJ, Donner A, Mueller BM, Ruf W (2002) Activation of endothelial cell protease activated receptor 1 by the protein C pathway. Science 296: 1880–1882

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Basel AG

About this chapter

Cite this chapter

Harlan, J.M. (2010). Endothelial activation and dysfunction in sepsis. In: Dauphinee, S., Karsan, A. (eds) Endothelial Dysfunction and Inflammation. Progress in Inflammation Research. Springer, Basel. https://doi.org/10.1007/978-3-0346-0168-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0346-0168-9_1

  • Published:

  • Publisher Name: Springer, Basel

  • Print ISBN: 978-3-0346-0167-2

  • Online ISBN: 978-3-0346-0168-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics