Skip to main content

Part of the book series: Milestones in Drug Therapy ((MDT))

  • 1060 Accesses

Abstract

Diabetes mellitus is a devastating disease and the World Health Organization expects that the number of diabetic patients will increase to 300 million by the year 2025. Intensive glycemic control with insulin therapy to both Type 1 and Type 2 diabetic patients can reduce the risk of diabetic complications, but also increase the incidence of hypoglycemia. Many studies have shown the possibility of gene therapy for treatment of diabetes. Gene therapy can be successfully applied to treat Type 1 diabetes (T1D) and to facilitate the replacement of insulin-producing cells by islet transplantation, by differentiation of stem/progenitor cells, or by reversible immortalization in rodent models. Here we review potential approaches for the development of gene therapies for diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson MS, Bluestone JA (2005) The NOD mouse: a model of immune dysregulation. Annu Rev Immunol 23: 447–485

    Article  CAS  PubMed  Google Scholar 

  2. Bach JF (1994) Insulin-dependent diabetes mellitus as an autoimmune disease. Endocr Rev 15: 516–542

    CAS  PubMed  Google Scholar 

  3. Eisenbarth GS (2004) Prediction of type 1 diabetes: the natural history of the prediabetic period. Adv Exp Med Biol 552: 268–290

    PubMed  Google Scholar 

  4. Tisch R, McDevitt H (1996) Insulin-dependent diabetes mellitus. Cell 85: 291–297

    Article  CAS  PubMed  Google Scholar 

  5. Eisenbarth GS (1993) Molecular aspects of the etiology of type I diabetes mellitus. J Diabetes Complications 7: 142–150

    Article  CAS  PubMed  Google Scholar 

  6. French MB, Allison J, Cram DS, Thomas HE, Dempsey-Collier M, Silva A, Georgiou HM, Kay TW, Harrison LC, Lew AM (1997) Transgenic expression of mouse proinsulin II prevents diabetes in nonobese diabetic mice. Diabetes 46: 34–39

    Article  CAS  PubMed  Google Scholar 

  7. Miyazaki T, Matsuda Y, Toyonaga T, Miyazaki J, Yazaki Y, Yamamura K (1992) Prevention of autoimmune insulitis in nonobese diabetic mice by expression of major histocompatibility complex class I Ld molecules. Proc Natl Acad Sci U S A 89: 9519–9523

    Article  CAS  PubMed  Google Scholar 

  8. Posselt AM, Naji A, Roark JH, Markmann JF, Barker CF (1991) Intrathymic islet transplantation in the spontaneously diabetic BB rat. Ann Surg 214: 363–371

    Article  CAS  PubMed  Google Scholar 

  9. Posselt AM, Barker CF, Friedman AL, Naji A (1992) Prevention of autoimmune diabetes in the BB rat by intrathymic islet transplantation at birth. Science 256: 1321–1324

    Article  CAS  PubMed  Google Scholar 

  10. Koevary SB, Blomberg M (1992) Prevention of diabetes in BB/Wor rats by intrathymic islet injection. J Clin Invest 89: 512–516

    Article  CAS  PubMed  Google Scholar 

  11. Charlton B, Taylor-Edwards C, Tisch R, Fathman CG (1994) Prevention of diabetes and insulitis by neonatal intrathymic islet administration in NOD mice. J Autoimmun 7: 549–560

    Article  CAS  PubMed  Google Scholar 

  12. Awata T, Kawasaki E, Ikegami H, Kobayashi T, Maruyama T, Nakanishi K, Shimada A, Iizuka H, Kurihara S, Osaki M, Uga M, Kawabata Y, Tanaka S, Kanazawa Y, Katayama S (2007) Insulin gene/IDDM2 locus in Japanese type 1 diabetes: contribution of class I alleles and influence of class I subdivision in susceptibility to type 1 diabetes. J Clin Endocrinol Metab 92: 1791–1795

    Article  CAS  PubMed  Google Scholar 

  13. Hill NJ, Lyons PA, Armitage N, Todd JA, Wicker LS, Peterson LB (2000) NOD Idd5 locus controls insulitis and diabetes and overlaps the orthologous CTLA4/IDDM12 and NRAMP1 loci in humans. Diabetes 49: 1744–1747

    Article  CAS  PubMed  Google Scholar 

  14. Ueda H, Howson JM, Esposito L, Heward J, Snook H, Chamberlain G, Rainbow DB, Hunter KM, Smith AN, Di Genova G et al. (2003) Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423: 506–511

    Article  CAS  PubMed  Google Scholar 

  15. Arif S, Tree TI, Astill TP, Tremble JM, Bishop AJ, Dayan CM, Roep BO, Peakman M (2004) Autoreactive T cell responses show proinflammatory polarization in diabetes but a regulatory phenotype in health. J Clin Invest 113: 451–463

    CAS  PubMed  Google Scholar 

  16. Brusko TM, Wasserfall CH, Clare-Salzler MJ, Schatz DA, Atkinson MA (2005) Functional defects and the influence of age on the frequency of CD4+ CD25+ T-cells in type 1 diabetes. Diabetes 54: 1407–1414

    Article  CAS  PubMed  Google Scholar 

  17. Lindley S, Dayan CM, Bishop A, Roep BO, Peakman M, Tree TI (2005) Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes. Diabetes 54: 92–99

    Article  CAS  PubMed  Google Scholar 

  18. The Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulindependent diabetes mellitus. N Engl J Med 329: 977–986

    Article  Google Scholar 

  19. UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352: 837–853

    Article  Google Scholar 

  20. Ohkubo Y, Kishikawa H, Araki E, Miyata T, Isami S, Motoyoshi S, Kojima Y, Furuyoshi N, Shichiri M (1995) Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract 28: 103–117

    Article  CAS  PubMed  Google Scholar 

  21. Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, Kneteman NM, Rajotte RV (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoidfree immunosuppressive regimen. N Engl J Med 343: 230–238

    Article  CAS  PubMed  Google Scholar 

  22. Noguchi H, Iwanaga Y, Okitsu T, Nagata H, Yonekawa Y, Matsumoto S (2006) Evaluation of islet transplantation from non-heart beating donors. Am J Transplant 6: 2476–2482

    Article  CAS  PubMed  Google Scholar 

  23. Cetkovic-Cvrlje M, Gerling IC, Muir A, Atkinson MA, Elliott JF, Leiter EH (1997) Retardation or acceleration of diabetes in NOD/Lt mice mediated by intrathymic administration of candidate beta-cell antigens. Diabetes 46: 1975–1982

    Article  CAS  PubMed  Google Scholar 

  24. Prud’homme GJ, Chang Y (1999) Prevention of autoimmune diabetes by intramuscular gene therapy with a nonviral vector encoding an interferon-gamma receptor/IgG1 fusion protein. Gene Ther 6: 771–777

    Article  CAS  Google Scholar 

  25. Piccirillo CA, Chang Y, Prud’homme GJ (1998) TGF-beta1 somatic gene therapy prevents autoimmune disease in nonobese diabetic mice. J Immunol 161: 3950–3956

    CAS  PubMed  Google Scholar 

  26. Morse MA, Deng Y, Coleman D, Hull S, Kitrell-Fisher E, Nair S, Schlom J, Ryback ME, Lyerly HK (1999) A Phase I study of active immunotherapy with carcinoembryonic antigen peptide (CAP-1)-pulsed, autologous human cultured dendritic cells in patients with metastatic malignancies expressing carcinoembryonic antigen. Clin Cancer Res 5: 1331–1338

    CAS  PubMed  Google Scholar 

  27. Heiser A, Maurice MA, Yancey DR, Coleman DM, Dahm P, Vieweg J (2001) Human dendritic cells transfected with renal tumor RNA stimulate polyclonal T-cell responses against antigens expressed by primary and metastatic tumors. Cancer Res 61: 3388–3393

    CAS  PubMed  Google Scholar 

  28. Dhodapkar MV, Steinman RM, Krasovsky J, Munz C, Bhardwaj N (2001) Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med 193: 233–238

    Article  CAS  PubMed  Google Scholar 

  29. Prud’homme GJ (2003) Prevention of autoimmune diabetes by DNA vaccination. Expert Rev Vaccines 2: 533–540

    Article  CAS  Google Scholar 

  30. Lenschow DJ, Zeng Y, Thistlethwaite JR, Montag A, Brady W, Gibson MG, Linsley PS, Bluestone JA (1992) Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4lg. Science 257: 789–792

    Article  CAS  PubMed  Google Scholar 

  31. Guo Z, Mital D, Mo YY, Tian Y, Shen J, Chong AS, Foster P, Sankary H, McChesney L, Jensik SC, Williams JW (1998) Effect of gene gun-mediated CTLA4IG and Fas ligand gene transfection on concordant xenogeneic islet graft rejection. Transplant Proc 30: 589

    Article  CAS  PubMed  Google Scholar 

  32. Gainer AL, Korbutt GS, Rajotte RV, Warnock GL, Elliott JF (1997) Expression of CTLA4-Ig by biolistically transfected mouse islets promotes islet allograft survival. Transplantation 63: 1017–1021

    Article  CAS  PubMed  Google Scholar 

  33. Adams AB, Shirasugi N, Durham MM, Strobert E, Anderson D, Rees P, Cowan S, Xu H, Blinder Y, Cheung M et al. CPnr] (2002) Calcineurin inhibitor-free CD28 blockade-based protocol protects allogeneic islets in nonhuman primates. Diabetes 51: 265–270

    Article  CAS  PubMed  Google Scholar 

  34. Chahine AA, Yu M, McKernan MM, Stoeckert C, Lau HT (1995) Immunomodulation of pancreatic islet allografts in mice with CTLA4Ig secreting muscle cells. Transplantation 59: 1313–1318

    CAS  PubMed  Google Scholar 

  35. Kenyon NS, Chatzipetrou M, Masetti M, Ranuncoli A, Oliveira M, Wagner JL, Kirk AD, Harlan DM, Burkly LC, Ricordi C (1999) Long-term survival and function of intrahepatic islet allografts in rhesus monkeys treated with humanized anti-CD154. Proc Natl Acad Sci U S A 96: 8132–8137

    Article  CAS  PubMed  Google Scholar 

  36. Kawai T, Andrews D, Colvin RB, Sachs DH and Cosimi AB (2000) Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand. Nat Med 6: 114

    Article  CAS  Google Scholar 

  37. Buhler L, Alwayn IP, Appel JZ 3rd, Robson SC and Cooper DK (2001) Anti-CD154 monoclonal antibody and thromboembolism. Transplantation 71: 491

    Article  CAS  PubMed  Google Scholar 

  38. Adams AB, Shirasugi N, Jones TR, Durham MM, Strobert EA, Cowan S, Rees P, Hendrix R, Price K, Kenyon NS et al. (2005) Development of a chimeric anti-CD40 monoclonal antibody that synergizes with LEA29Y to prolong islet allograft survival. J Immunol 174: 542–550

    CAS  PubMed  Google Scholar 

  39. Noguchi H, Kaneto H, Weir GC, Bonner-Weir S (2003) PDX-1 protein containing its own antennapedia-like protein transduction domain can transduce pancreatic duct and islet cells. Diabetes 52: 1732–1737

    Article  CAS  PubMed  Google Scholar 

  40. Taniguchi H, Yamato E, Tashiro F, Ikegami H, Ogihara T, Miyazaki J (2003) beta-cell neogenesis induced by adenovirus-mediated gene delivery of transcription factor pdx-1 into mouse pancreas. Gene Ther 10: 15–23

    Article  CAS  PubMed  Google Scholar 

  41. Ferber S, Halkin A, Cohen H, Ber I, Einav Y, Goldberg I, Barshack I, Seijffers R, Kopolovic J, Kaiser N, Karasik A (2000) Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat Med 6: 568–572

    Article  CAS  PubMed  Google Scholar 

  42. Kaneto H, Nakatani Y, Miyatsuka T, Matsuoka TA, Matsuhisa M, Hori M, Yamasaki Y (2005) PDX-1/VP16 fusion protein, together with NeuroD or Ngn3, markedly induces insulin gene transcription and ameliorates glucose tolerance. Diabetes 54: 1009–1022

    Article  CAS  PubMed  Google Scholar 

  43. Apelqvist A, Li H, Sommer L, Beatus P, Anderson DJ, Honjo T, Hrabe de Angelis M, Lendahl U, Edlund H (1999) Notch signalling controls pancreatic cell differentiation. Nature 400: 877–881

    Article  CAS  PubMed  Google Scholar 

  44. Schwitzgebel VM, Scheel DW, Conners JR, Kalamaras J, Lee JE, Anderson DJ, Sussel L, Johnson JD, German MS (2000) Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development 127: 3533–3542

    CAS  PubMed  Google Scholar 

  45. Heremans Y, Van De Casteele M, in’t Veld P, Gradwohl G, Serup P, Madsen O, Pipeleers D, Heimberg H (2002) Recapitulation of embryonic neuroendocrine differentiation in adult human pancreatic duct cells expressing neurogenin 3. J Cell Biol 159: 303–312

    Article  CAS  PubMed  Google Scholar 

  46. Kojima H, Fujimiya M, Matsumura K, Younan P, Imaeda H, Maeda M, Chan L (2003) NeuroDbetacellulin gene therapy induces islet neogenesis in the liver and reverses diabetes in mice. Nat Med 9: 596–603

    Article  CAS  PubMed  Google Scholar 

  47. Blyszczuk P, Czyz J, Kania G, Wagner M, Roll U, St-Onge L, Wobus AM (2003) Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulinproducing cells. Proc Natl Acad Sci U S A 100: 998–1003.

    Article  CAS  PubMed  Google Scholar 

  48. Kaneto H, Matsuoka TA, Nakatani Y, Miyatsuka T, Matsuhisa M, Hori M, Yamasaki Y (2005) A crucial role of MafA as a novel therapeutic target for diabetes. J Biol Chem 280: 15047–15052

    Article  CAS  PubMed  Google Scholar 

  49. Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA (2008) In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 455: 627–632

    Article  CAS  PubMed  Google Scholar 

  50. Westerman KA, Leboulch P (1996) Reversible immortalization of mammalian cells mediated by retroviral transfer and site-specific recombination. Proc Natl Acad Sci U S A 93: 8971–8976

    Article  CAS  PubMed  Google Scholar 

  51. Narushima M, Kobayashi N, Okitsu T, Tanaka Y, Li SA, Chen Y, Miki A, Tanaka K, Nakaji S, Takei K et al. (2005) A human beta-cell line for transplantation therapy to control type 1 diabetes. Nat Biotechnol 23: 1274–1282

    Article  CAS  PubMed  Google Scholar 

  52. Salmon P, Oberholzer J, Occhiodoro T, Morel P, Lou J, Trono D (2000) Reversible immortalization of human primary cells by lentivector-mediated transfer of specific genes. Mol Ther 2: 404–414

    Article  CAS  PubMed  Google Scholar 

  53. Milo-Landesman D, Surana M, Berkovich I, Compagni A, Christofori G, Fleischer N, Efrat S (2001) Correction of hyperglycemia in diabetic mice transplanted with reversibly immortalized pancreatic beta cells controlled by the tet-on regulatory system. Cell Transplant 10: 645–650

    CAS  PubMed  Google Scholar 

  54. Noguchi H, Matsushita M, Okitsu T, Moriwaki A, Tomizawa K, Kang S, Li ST, Kobayashi N, Matsumoto S, Tanaka K et al. (2004) A new cell-permeable peptide allows successful allogeneic islet transplantation in mice. Nat Med 10: 305–309

    Article  CAS  PubMed  Google Scholar 

  55. Noguchi H, Bonner-Weir S, Wei FY, Matsushita M, Matsumoto S (2005) BETA2/NeuroD protein can be transduced into cells due to an arginine-and lysine-rich sequence. Diabetes 54: 2859–2866

    Article  CAS  PubMed  Google Scholar 

  56. Dominguez-Bendala J, Klein D, Ribeiro M, Ricordi C, Inverardi L, Pastori R, Edlund H (2005) TAT-mediated neurogenin 3 protein transduction stimulates pancreatic endocrine differentiation in vitro. Diabetes 54: 720–726

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Basel

About this chapter

Cite this chapter

Noguchi, H. (2010). Gene therapy for diabetes. In: Chernajovsky, Y., Robbins, P.D. (eds) Gene Therapy for Autoimmune and Inflammatory Diseases. Milestones in Drug Therapy. Springer, Basel. https://doi.org/10.1007/978-3-0346-0165-8_3

Download citation

Publish with us

Policies and ethics