Skip to main content

Gene therapy for the treatment of inflammatory bowel disease

  • Chapter
Gene Therapy for Autoimmune and Inflammatory Diseases

Part of the book series: Milestones in Drug Therapy ((MDT))

  • 999 Accesses

Abstract

Gene- and nucleic acid-based therapies for inflammatory bowel disease (IBD) have shown efficacy in animal models and are beginning to be utilized in clinical studies. Emerging research efforts are concentrating on the development of nonviral-based DNA delivery technologies that can be administered via oral and rectal routes to achieve therapeutic effects locally within the affected intestinal tissue. Although the majority of work is in preclinical development stages, some nucleic acid-based approaches for treating IBD have successfully progressed to early stages of clinical trials. In this chapter, we will focus on discussing these nucleic acid-based therapies as well as other potential new therapeutics for the treatment of IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Casellas F, Lopez-Vivancos J, Vergara M, Malagelada J (1999) Impact of inflammatory bowel disease on health-related quality of life. Dig Dis 17: 208–218

    Article  CAS  PubMed  Google Scholar 

  2. Tukel T, Shalata A, Present D, Rachmilewitz D, Mayer L, Grant D, Risch N, Desnick RJ (2004) Crohn disease: frequency and nature of CARD15 mutations in Ashkenazi and Sephardi/Oriental Jewish families. Am J Hum Genet 74: 623–636

    Article  CAS  PubMed  Google Scholar 

  3. Kappelman MD, Rifas-Shiman SL, Porter CQ, Ollendorf DA, Sandler RS, Galanko JA, Finkelstein JA (2008) Direct health care costs of Crohn’s disease and ulcerative colitis in US children and adults. Gastroenterology, 1907–1913

    Google Scholar 

  4. Longobardi T, Jacobs P, Bernstein CN (2003) Work losses related to inflammatory bowel disease in the United States: results from the National Health Interview Survey. Am J Gastroenterol 98: 1064–1072

    PubMed  Google Scholar 

  5. Zhang H, Massey D, Tremelling M, Parkes M (2008) Genetics of inflammatory bowel disease: clues to pathogenesis. Br Med Bull 87: 17–30

    Article  CAS  PubMed  Google Scholar 

  6. Grant SF, Baldassano RN, Hakonarson H (2008) Classification of genetic profiles of Crohn’s disease: a focus on the ATG16L1 gene. Expert Rev Mol Diagn 8: 199–207

    Article  CAS  PubMed  Google Scholar 

  7. Hugot JP (2006) CARD15/NOD2 mutations in Crohn’s disease. Ann N Y Acad Sci 1072: 9–18

    Article  CAS  PubMed  Google Scholar 

  8. Barnich N, Aguirre JE, Reinecker HC, Xavier R, Podolsky DK (2005) Membrane recruitment of NOD2 in intestinal epithelial cells is essential for nuclear factor-{kappa}B activation in muramyl dipeptide recognition. J Cell Biol 170: 21–26

    Article  CAS  PubMed  Google Scholar 

  9. Noguchi E, Homma Y, Kang X, Netea MG, Ma X (2009) A Crohn’s disease-associated NOD2 mutation suppresses transcription of human IL10 by inhibiting activity of the nuclear ribonucleoprotein hnRNP-A1. Nat Immunol 10: 471–479

    Article  CAS  PubMed  Google Scholar 

  10. Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N, Nunez G, Flavell RA (2005) Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307: 731–734

    Article  CAS  PubMed  Google Scholar 

  11. Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, Steinhart AH, Abraham C, Regueiro M, Griffiths A et al. (2006) A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314: 1461–1463. Epub 2006 Oct 1426.

    Article  CAS  PubMed  Google Scholar 

  12. Hampe J, Franke A, Rosenstiel P, Till A, Teuber M, Huse K, Albrecht M, Mayr G, De La Vega FM, Briggs J et al. (2007) A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 39: 207–211. Epub 2006 Dec 2031.

    Article  CAS  PubMed  Google Scholar 

  13. Rioux JD, Xavier RJ, Taylor KD, Silverberg MS, Goyette P, Huett A, Green T, Kuballa P, Barmada MM, Datta LW et al. (2007) Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet 39: 596–604. Epub 2007 Apr 2015.

    Article  CAS  PubMed  Google Scholar 

  14. Izcue A, Hue S, Buonocore S, Arancibia-Carcamo CV, Ahern PP, Iwakura Y, Maloy KJ, Powrie F (2008) Interleukin-23 restrains regulatory T cell activity to drive T cell-dependent colitis. Immunity 28: 559–570

    Article  CAS  PubMed  Google Scholar 

  15. Elson CO, Cong Y, Weaver CT, Schoeb TR, McClanahan TK, Fick RB, Kastelein RA (2007) Monoclonal anti-interleukin 23 reverses active colitis in a T cell-mediated model in mice. Gastroenterology 132: 2359–2370

    Article  CAS  PubMed  Google Scholar 

  16. Becker C, Dornhoff H, Neufert C, Fantini MC, Wirtz S, Huebner S, Nikolaev A, Lehr HA, Murphy AJ, Valenzuela DM et al. (2006) Cutting edge: IL-23 cross-regulates IL-12 production in T celldependent experimental colitis. J Immunol 177: 2760–2764

    CAS  PubMed  Google Scholar 

  17. Rioux JD, Xavier RJ, Taylor KD, Silverberg MS, Goyette P, Huett A, Green T, Kuballa P, Barmada MM, Datta LW et al. (2007) Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet 39: 596–604

    Article  CAS  PubMed  Google Scholar 

  18. Kim SC, Tonkonogy SL, Albright CA, Tsang J, Balish EJ, Braun J, Huycke MM, Sartor RB (2005) Variable phenotypes of enterocolitis in interleukin 10-deficient mice monoassociated with two different commensal bacteria. Gastroenterology 128: 891–906

    Article  CAS  PubMed  Google Scholar 

  19. Brimnes J, Reimann J, Nissen M, Claesson M (2001) Enteric bacterial antigens activate CD4(+) T cells from scid mice with inflammatory bowel disease. Eur J Immunol 31: 23–31

    Article  CAS  PubMed  Google Scholar 

  20. Ohkusa T, Yoshida T, Sato N, Watanabe S, Tajiri H, Okayasu I (2009) Commensal bacteria can enter colonic epithelial cells and induce proinflammatory cytokine secretion: a possible pathogenic mechanism of ulcerative colitis. J Med Microbiol 58: 535–545

    Article  CAS  PubMed  Google Scholar 

  21. Arrieta MC, Madsen K, Doyle J, Meddings J (2009) Reducing small intestinal permeability attenuates colitis in the IL10 gene-deficient mouse. Gut 58: 41–48

    Article  CAS  PubMed  Google Scholar 

  22. Ferry GD (1999) Quality of life in inflammatory bowel disease: background and definitions. J Pediatr Gastroenterol Nutr 28: S15–18

    Article  CAS  PubMed  Google Scholar 

  23. von Wietersheim J, Kessler H (2006) Psychotherapy with chronic inflammatory bowel disease patients: a review. Inflamm Bowel Dis 12: 1175–1184

    Article  Google Scholar 

  24. Karagozian R, Burakoff R (2007) The role of mesalamine in the treatment of ulcerative colitis. Ther Clin Risk Manag 3: 893–903

    CAS  PubMed  Google Scholar 

  25. Cohen RD (2006) Review article: evolutionary advances in the delivery of aminosalicylates for the treatment of ulcerative colitis. Aliment Pharmacol Ther 24: 465–474

    Article  CAS  PubMed  Google Scholar 

  26. Katz JA (2004) Treatment of inflammatory bowel disease with corticosteroids. Gastroenterol Clin North Am 33: 171–189, vii

    Article  PubMed  Google Scholar 

  27. Angelucci E, Malesci A, Danese S (2008) Budesonide: teaching an old dog new tricks for inflammatory bowel disease treatment. Curr Med Chem 15: 2527–2535

    Article  CAS  PubMed  Google Scholar 

  28. Sandborn W, Sutherland L, Pearson D, May G, Modigliani R, Prantera C (2000) Azathioprine or 6-mercaptopurine for inducing remission of Crohn’s disease. Cochrane Database Syst Rev: CD000545

    Google Scholar 

  29. Pearson DC, May GR, Fick G, Sutherland LR (2000) Azathioprine for maintaining remission of Crohn’s disease. Cochrane Database Syst Rev: CD000067

    Google Scholar 

  30. de Boer NK, van Bodegraven AA, Jharap B, de Graaf P, Mulder CJ (2007) Drug Insight: pharmacology and toxicity of thiopurine therapy in patients with IBD. Nat Clin Pract Gastroenterol Hepatol 4: 686–694

    Article  PubMed  Google Scholar 

  31. Alfadhli AA, McDonald JW, Feagan BG (2005) Methotrexate for induction of remission in refractory Crohn’s disease. Cochrane Database Syst Rev: CD003459

    Google Scholar 

  32. Soon SY, Ansari A, Yaneza M, Raoof S, Hirst J, Sanderson JD (2004) Experience with the use of low-dose methotrexate for inflammatory bowel disease. Eur J Gastroenterol Hepatol 16: 921–926

    Article  CAS  PubMed  Google Scholar 

  33. Fraser AG (2003) Methotrexate: first-line or second-line immunomodulator? Eur J Gastroenterol Hepatol 15: 225–231

    Article  CAS  PubMed  Google Scholar 

  34. Hanauer SB, Feagan BG, Lichtenstein GR, Mayer LF, Schreiber S, Colombel JF, Rachmilewitz D, Wolf DC, Olson A, Bao W et al. (2002) Maintenance infliximab for Crohn’s disease: the ACCENT I randomised trial. Lancet 359: 1541–1549

    Article  CAS  PubMed  Google Scholar 

  35. Present DH, Rutgeerts P, Targan S, Hanauer SB, Mayer L, van Hogezand RA, Podolsky DK, Sands BE, Braakman T, DeWoody KL et al. (1999) Infliximab for the treatment of fistulas in patients with Crohn’s disease. N Engl J Med 340: 1398–1405

    Article  CAS  PubMed  Google Scholar 

  36. Colombel JF, Loftus EV Jr, Tremaine WJ, Egan LJ, Harmsen WS, Schleck CD, Zinsmeister AR, Sandborn WJ (2004) The safety profile of infliximab in patients with Crohn’s disease: the Mayo clinic experience in 500 patients. Gastroenterology 126: 19–31

    Article  CAS  PubMed  Google Scholar 

  37. Vermeire S, Van Assche G, Rutgeerts P (2009) Serum sickness, encephalitis and other complications of anti-cytokine therapy. Best Pract Res Clin Gastroenterol 23: 101–112

    Article  CAS  PubMed  Google Scholar 

  38. Baker DE (2007) Natalizumab: overview of its pharmacology and safety. Rev Gastroenterol Disord 7: 38–46

    PubMed  Google Scholar 

  39. Targan SR, Feagan BG, Fedorak RN, Lashner BA, Panaccione R, Present DH, Spehlmann ME, Rutgeerts PJ, Tulassay Z, Volfova M et al. (2007) Natalizumab for the treatment of active Crohn’s disease: results of the ENCORE Trial. Gastroenterology 132: 1672–1683

    Article  CAS  PubMed  Google Scholar 

  40. Calabrese LH, Molloy ES (2008) Progressive multifocal leucoencephalopathy in the rheumatic diseases: assessing the risks of biological immunosuppressive therapies. Ann Rheum Dis 67 Suppl 3: 1164–65

    Article  Google Scholar 

  41. Baumgart DC, Sandborn WJ (2007) Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet 369: 1641–1657

    Article  CAS  PubMed  Google Scholar 

  42. Krupnick AS, Morris JB (2000) The long-term results of resection and multiple resections in Crohn’s disease. Semin Gastrointest Dis 11: 41–51

    CAS  PubMed  Google Scholar 

  43. Berg DF, Bahadursingh AM, Kaminski DL, Longo WE (2002) Acute surgical emergencies in inflammatory bowel disease. Am J Surg 184: 45–51

    Article  PubMed  Google Scholar 

  44. Ding C, Xu J, Li J (2008) ABT-874, a fully human monoclonal anti-IL-12/IL-23 antibody for the potential treatment of autoimmune diseases. Curr Opin Investig Drugs 9: 515–522

    CAS  PubMed  Google Scholar 

  45. Ito H, Hirotani T, Yamamoto M, Ogawa H, Kishimoto T (2002) Anti-IL-6 receptor monoclonal antibody inhibits leukocyte recruitment and promotes T-cell apoptosis in a murine model of Crohn’s disease. J Gastroenterol 37 Suppl 14: 56–61

    CAS  PubMed  Google Scholar 

  46. Ito H (2005) Treatment of Crohn’s disease with anti-IL-6 receptor antibody. J Gastroenterol 40 Suppl 16: 32–34

    Article  Google Scholar 

  47. Fedorak RN, Gangl A, Elson CO, Rutgeerts P, Schreiber S, Wild G, Hanauer SB, Kilian A, Cohard M, LeBeaut A et al. (2000) Recombinant human interleukin 10 in the treatment of patients with mild to moderately active Crohn’s disease. The Interleukin 10 Inflammatory Bowel Disease Cooperative Study Group. Gastroenterology 119: 1473–1482

    Article  CAS  PubMed  Google Scholar 

  48. van Deventer SJ, Elson CO, Fedorak RN (1997) Multiple doses of intravenous interleukin 10 in steroid-refractory Crohn’s disease. Crohn’s Disease Study Group. Gastroenterology 113: 383–389

    Article  PubMed  Google Scholar 

  49. Tilg H, van Montfrans C, van den Ende A, Kaser A, van Deventer SJ, Schreiber S, Gregor M, Ludwiczek O, Rutgeerts P, Gasche C et al. (2002) Treatment of Crohn’s disease with recombinant human interleukin 10 induces the proinflammatory cytokine interferon gamma. Gut 50: 191–195

    Article  CAS  PubMed  Google Scholar 

  50. Schreiber S, Fedorak RN, Nielsen OH, Wild G, Williams CN, Nikolaus S, Jacyna M, Lashner BA, Gangl A, Rutgeerts P et al. (2000) Safety and efficacy of recombinant human interleukin 10 in chronic active Crohn’s disease. Crohn’s Disease IL-10 Cooperative Study Group. Gastroenterology 119: 1461–1472

    Article  CAS  PubMed  Google Scholar 

  51. Nakase H, Okazaki K, Tabata Y, Ozeki M, Watanabe N, Ohana M, Uose S, Uchida K, Nishi T, Mastuura M et al. (2002) New cytokine delivery system using gelatin microspheres containing interleukin-10 for experimental inflammatory bowel disease. J Pharmacol Exp Ther 301: 59–65

    Article  CAS  PubMed  Google Scholar 

  52. Lindsay JO, Sandison A, Cohen P, Brennan FM, Hodgson HJ (2004) IL-10 gene therapy is therapeutic for dextran sodium sulfate-induced murine colitis. Dig Dis Sci 49: 1327–1334

    Article  CAS  PubMed  Google Scholar 

  53. Lindsay JO, Ciesielski CJ, Scheinin T, Brennan FM, Hodgson HJ (2003) Local delivery of adenoviral vectors encoding murine interleukin 10 induces colonic interleukin 10 production and is therapeutic for murine colitis. Gut 52: 363–369

    Article  CAS  PubMed  Google Scholar 

  54. Lindsay J, Van Montfrans C, Brennan F, Van Deventer S, Drillenburg P, Hodgson H, Te Velde A, Sol Rodriguez Pena M (2002) IL-10 gene therapy prevents TNBS-induced colitis. Gene Ther 9: 1715–1721

    Article  CAS  PubMed  Google Scholar 

  55. Braat H, Rottiers P, Hommes DW, Huyghebaert N, Remaut E, Remon JP, van Deventer SJ, Neirynck S, Peppelenbosch MP, Steidler L (2006) A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin Gastroenterol Hepatol 4: 754–759

    Article  CAS  PubMed  Google Scholar 

  56. Waeytens A, Ferdinande L, Neirynck S, Rottiers P, De Vos M, Steidler L, Cuvelier CA (2008) Paracellular entry of interleukin-10 producing Lactococcus lactis in inflamed intestinal mucosa in mice. Inflamm Bowel Dis 14: 471–479

    Article  PubMed  Google Scholar 

  57. Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F, Falk W, Fiers W, Remaut E (2000) Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289: 1352–1355

    Article  CAS  PubMed  Google Scholar 

  58. Plevy S, Salzberg B, Van Assche G, Regueiro M, Hommes D, Sandborn W, Hanauer S, Targan S, Mayer L, Mahadevan U et al. (2007) A phase I study of visilizumab, a humanized anti-CD3 monoclonal antibody, in severe steroid-refractory ulcerative colitis. Gastroenterology 133: 1414–1422

    Article  CAS  PubMed  Google Scholar 

  59. Creed TJ, Probert CS, Norman MN, Moorghen M, Shepherd NA, Hearing SD, Dayan CM (2006) Basiliximab for the treatment of steroid-resistant ulcerative colitis: further experience in moderate and severe disease. Aliment Pharmacol Ther 23: 1435–1442

    Article  CAS  PubMed  Google Scholar 

  60. Van Assche G, Sandborn WJ, Feagan BG, Salzberg BA, Silvers D, Monroe PS, Pandak WM, Anderson FH, Valentine JF, Wild GE et al. (2006) Daclizumab, a humanised monoclonal antibody to the interleukin 2 receptor (CD25), for the treatment of moderately to severely active ulcerative colitis: a randomised, double blind, placebo controlled, dose ranging trial. Gut 55: 1568–1574

    Article  PubMed  Google Scholar 

  61. Polese L, Angriman I, Scarpa M, Norberto L, Sturniolo GC, Cecchetto A, Ruffolo C, D’Amico DF (2003) Role of CD40 and B7 costimulators in inflammatory bowel diseases. Acta Biomed 74 Suppl 2: 65–70

    PubMed  Google Scholar 

  62. Liu Z, Geboes K, Colpaert S, Overbergh L, Mathieu C, Heremans H, de Boer M, Boon L, D’Haens G, Rutgeerts P et al. (2000) Prevention of experimental colitis in SCID mice reconstituted with CD45RBhigh CD4+ T cells by blocking the CD40-CD154 interactions. J Immunol 164: 6005–6014

    CAS  PubMed  Google Scholar 

  63. Alegre ML, Fallarino F (2006) Mechanisms of CTLA-4-Ig in tolerance induction. Curr Pharm Des 12: 149–160

    Article  CAS  PubMed  Google Scholar 

  64. Davenport CM, McAdams HA, Kou J, Mascioli K, Eichman C, Healy L, Peterson J, Murphy S, Coppola D, Truneh A (2002) Inhibition of pro-inflammatory cytokine generation by CTLA4-Ig in the skin and colon of mice adoptively transplanted with CD45RBhi CD4+ T cells correlates with suppression of psoriasis and colitis. Int Immunopharmacol 2: 653–672

    Article  CAS  PubMed  Google Scholar 

  65. Slonim AE, Bulone L, Damore MB, Goldberg T, Wingertzahn MA, McKinley MJ (2000) A preliminary study of growth hormone therapy for Crohn’s disease. N Engl J Med 342: 1633–1637

    Article  CAS  PubMed  Google Scholar 

  66. Drucker DJ (2002) Biological actions and therapeutic potential of the glucagon-like peptides. Gastroenterology 122: 531–544

    Article  CAS  PubMed  Google Scholar 

  67. Drucker DJ, Yusta B, Boushey RP, DeForest L, Brubaker PL (1999) Human [Gly2]GLP-2 reduces the severity of colonic injury in a murine model of experimental colitis. Am J Physiol 276: G79–91

    CAS  PubMed  Google Scholar 

  68. Yazbeck R, Howarth GS, Geier MS, Demuth HU, Abbott CA (2008) Inhibiting dipeptidyl peptidase activity partially ameliorates colitis in mice. Front Biosci 13: 6850–6858

    Article  CAS  PubMed  Google Scholar 

  69. Bengmark S (2007) Bioecological control of inflammatory bowel disease. Clin Nutr 26: 169–181

    Article  PubMed  Google Scholar 

  70. Ott SJ, Musfeldt M, Wenderoth DF, Hampe J, Brant O, Folsch UR, Timmis KN, Schreiber S (2004) Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 53: 685–693

    Article  CAS  PubMed  Google Scholar 

  71. Damaskos D, Kolios G (2008) Probiotics and prebiotics in inflammatory bowel disease: microflora on the scope’. Br J Clin Pharmacol 65: 453–467

    Article  PubMed  Google Scholar 

  72. Looijer-van Langen MA, Dieleman LA (2009) Prebiotics in chronic intestinal inflammation. Inflamm Bowel Dis 15: 454–462

    Article  PubMed  Google Scholar 

  73. Hedin C, Whelan K, Lindsay JO (2007) Evidence for the use of probiotics and prebiotics in inflammatory bowel disease: a review of clinical trials. Proc Nutr Soc 66: 307–315

    Article  PubMed  Google Scholar 

  74. Moreels TG, Pelckmans PA (2005) Gastrointestinal parasites: potential therapy for refractory inflammatory bowel diseases. Inflamm Bowel Dis 11: 178–184

    Article  PubMed  Google Scholar 

  75. Summers RW, Elliott DE, Urban JF Jr, Thompson RA, Weinstock JV (2005) Trichuris suis therapy for active ulcerative colitis: a randomized controlled trial. Gastroenterology 128: 825–832

    Article  PubMed  Google Scholar 

  76. Summers RW, Elliott DE, Qadir K, Urban JF Jr, Thompson R, Weinstock JV (2003) Trichuris suis seems to be safe and possibly effective in the treatment of inflammatory bowel disease. Am J Gastroenterol 98: 2034–2041

    Article  PubMed  Google Scholar 

  77. Radwanski E, Chakraborty A, Van Wart S, Huhn RD, Cutler DL, Affrime MB, Jusko WJ (1998) Pharmacokinetics and leukocyte responses of recombinant human interleukin-10. Pharm Res 15: 1895–1901

    Article  CAS  PubMed  Google Scholar 

  78. Huhn RD, Radwanski E, Gallo J, Affrime MB, Sabo R, Gonyo G, Monge A, Cutler DL (1997) Pharmacodynamics of subcutaneous recombinant human interleukin-10 in healthy volunteers. Clin Pharmacol Ther 62: 171–180

    Article  CAS  PubMed  Google Scholar 

  79. Huhn RD, Radwanski E, O’Connell SM, Sturgill MG, Clarke L, Cody RP, Affrime MB, Cutler DL (1996) Pharmacokinetics and immunomodulatory properties of intravenously administered recombinant human interleukin-10 in healthy volunteers. Blood 87: 699–705

    CAS  PubMed  Google Scholar 

  80. Davis SS, Illum L (2003) Absorption enhancers for nasal drug delivery. Clin Pharmacokinet 42: 1107–1128

    Article  CAS  PubMed  Google Scholar 

  81. Dyer AM, Hinchcliffe M, Watts P, Castile J, Jabbal-Gill I, Nankervis R, Smith A, Illum L (2002) Nasal delivery of insulin using novel chitosan based formulations: a comparative study in two animal models between simple chitosan formulations and chitosan nanoparticles. Pharm Res 19: 998–1008

    Article  CAS  PubMed  Google Scholar 

  82. Song J, Suh CH, Park YB, Lee SH, Yoo NC, Lee JD, Kim KH, Lee SK (2001) A phase I/IIa study on intra-articular injection of holmium-166-chitosan complex for the treatment of knee synovitis of rheumatoid arthritis. Eur J Nucl Med 28: 489–497

    Article  CAS  PubMed  Google Scholar 

  83. Wedmore I, McManus JG, Pusateri AE, Holcomb JB (2006) A special report on the chitosanbased hemostatic dressing: experience in current combat operations. J Trauma 60: 655–658

    Article  PubMed  Google Scholar 

  84. Mao HQ, Roy K, Troung-Le VL, Janes KA, Lin KY, Wang Y, August JT, Leong KW (2001) Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J Control Release 70: 399–421

    Article  CAS  PubMed  Google Scholar 

  85. Zheng F, Shi XW, Yang GF, Gong LL, Yuan HY, Cui YJ, Wang Y, Du YM, Li Y (2007) Chitosan nanoparticle as gene therapy vector via gastrointestinal mucosa administration: results of an in vitro and in vivo study. Life Sci 80: 388–396

    Article  CAS  PubMed  Google Scholar 

  86. Li F, Wang L, Jin XM, Yan CH, Jiang S, Shen XM (2009) The immunologic effect of TGF-beta1 chitosan nanoparticle plasmids on ovalbumin-induced allergic BALB/c mice. Immunobiology 214: 87–99

    Article  CAS  PubMed  Google Scholar 

  87. Roy K, Mao HQ, Huang SK, Leong KW (1999) Oral gene delivery with chitosan — DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat Med 5: 387–391

    Article  CAS  PubMed  Google Scholar 

  88. Bhavsar MD, Amiji MM (2008) Oral IL-10 gene delivery in a microsphere-based formulation for local transfection and therapeutic efficacy in inflammatory bowel disease. Gene Ther 15: 1200–1209

    Article  CAS  PubMed  Google Scholar 

  89. Zhang Z, Zheng M, Bindas J, Schwarzenberger P, Kolls JK (2006) Critical role of IL-17 receptor signaling in acute TNBS-induced colitis. Inflamm Bowel Dis 12: 382–388

    Article  PubMed  Google Scholar 

  90. Kolls JK, Linden A (2004) Interleukin-17 family members and inflammation. Immunity 21: 467–476

    Article  CAS  PubMed  Google Scholar 

  91. Fujino S, Andoh A, Bamba S, Ogawa A, Hata K, Araki Y, Bamba T, Fujiyama Y (2003) Increased expression of interleukin 17 in inflammatory bowel disease. Gut 52: 65–70

    Article  CAS  PubMed  Google Scholar 

  92. Sugimoto K, Ogawa A, Mizoguchi E, Shimomura Y, Andoh A, Bhan AK, Blumberg RS, Xavier RJ, Mizoguchi A (2008) IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J Clin Invest 118: 534–544

    CAS  PubMed  Google Scholar 

  93. Mease PJ, Hobbs K, Chalmers A, El-Gabalawy H, Bookman A, Keystone E, Furst DE, Anklesaria P, Heald AE (2009) Local delivery of a recombinant adeno-associated vector containing a tumor necrosis factor-{alpha} antagonist gene in inflammatory arthritis: a phase 1 dose-escalation safety and tolerability study. Ann Rheum Dis 68: 1247–1254

    Article  CAS  PubMed  Google Scholar 

  94. van Deventer SJ, Wedel MK, Baker BF, Xia S, Chuang E, Miner PB Jr, (2006) A phase II dose ranging, double-blind, placebo-controlled study of alicaforsen enema in subjects with acute exacerbation of mild to moderate left-sided ulcerative colitis. Aliment Pharmacol Ther 23: 1415–1425

    Article  PubMed  Google Scholar 

  95. Gilmore IR, Fox SP, Hollins AJ, Akhtar S (2006) Delivery strategies for siRNA-mediated gene silencing. Curr Drug Deliv 3: 147–155

    Article  CAS  PubMed  Google Scholar 

  96. Peer D, Park EJ, Morishita Y, Carman CV, Shimaoka M (2008) Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science 319: 627–630

    Article  CAS  PubMed  Google Scholar 

  97. Pedersen G, Andresen L, Matthiessen MW, Rask-Madsen J, Brynskov J (2005) Expression of Toll-like receptor 9 and response to bacterial CpG oligodeoxynucleotides in human intestinal epithelium. Clin Exp Immunol 141: 298–306

    Article  CAS  PubMed  Google Scholar 

  98. Rachmilewitz D, Karmeli F, Takabayashi K, Hayashi T, Leider-Trejo L, Lee J, Leoni LM, Raz E (2002) Immunostimulatory DNA ameliorates experimental and spontaneous murine colitis. Gastroenterology 122: 1428–1441

    Article  CAS  PubMed  Google Scholar 

  99. Rachmilewitz D, Karmeli F, Shteingart S, Lee J, Takabayashi K, Raz E (2006) Immunostimulatory oligonucleotides inhibit colonic proinflammatory cytokine production in ulcerative colitis. Inflamm Bowel Dis 12: 339–345

    Article  PubMed  Google Scholar 

  100. De Vry CG, Prasad S, Komuves L, Lorenzana C, Parham C, Le T, Adda S, Hoffman J, Kahoud N, Garlapati R et al. (2007) Non-viral delivery of nuclear factor-kappaB decoy ameliorates murine inflammatory bowel disease and restores tissue homeostasis. Gut 56: 524–533

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Basel

About this chapter

Cite this chapter

Ruffner, M.A., Plevy, S.E., Cheung, A.T. (2010). Gene therapy for the treatment of inflammatory bowel disease. In: Chernajovsky, Y., Robbins, P.D. (eds) Gene Therapy for Autoimmune and Inflammatory Diseases. Milestones in Drug Therapy. Springer, Basel. https://doi.org/10.1007/978-3-0346-0165-8_2

Download citation

Publish with us

Policies and ethics