Skip to main content

Applications of a Numerical Spectral Expansion Method to Problems in Physics; a Retrospective

  • Conference paper
Topics in Operator Theory

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 203))

Abstract

A long collaboration between Israel Koltracht and the present author resulted in a new formulation of a spectral expansion method in terms of Chebyshev polynomials appropriate for solving a Fredholm integral equation of the second kind, in one dimension. An accuracy of eight significant figures is generally obtained. The method will be reviewed, and applications to physics problems will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz, M. and Stegun, I., “Handbook of Mathematical Functions”, Dover, 1972, p. 445.

    Google Scholar 

  2. Clenshaw, C.C and Curtis, A.R. Numer. Math., 1960, 2, 197.

    Article  MATH  MathSciNet  Google Scholar 

  3. Deloff A., “Semi-spectral Chebyshev method in quantum mechanics”, 2007, Annals of Phys. 322, 1373–1419.

    Google Scholar 

  4. Dirac, P.A.M., The principles of Quantum Mechanics, Oxford, Clarendon Press 3rd edition, 1947.

    MATH  Google Scholar 

  5. Faddeev, L.D. and Merkuriev, S.P., 1993 “Quantum Scattering Theory for Several Particle Systems”, Kluwer Academic Publishers, Dordrecht 1993.

    MATH  Google Scholar 

  6. Fredholm, I., “Sur une classe d’équations fonctionelles”, Acta math., 1903, 27, 365–390.

    Article  MATH  MathSciNet  Google Scholar 

  7. Glöckle, W., Witala, W.H., Hüber, D., Kamada, H., Golak, “The threenucleon continuum: achievements, challenges and applications”, 1996, J. Phys. Rep. 274, 107–285.

    Google Scholar 

  8. Gloeckle, W. and Rawitscher, G., “Scheme for an accurate solution of Faddeevv integral equations in configuration space”, Proceedings of the 18th International Conference on Few-Body Problems in Physics, Santos, Brazil, Nucl. Phys. A, 790, 282–285 (2007).

    Google Scholar 

  9. Gonzales, R.A., Eisert, J., Koltracht, I., M. Neumann, M. and Rawitscher, G., “Integral Equation Method for the Continuous Spectrum Radial Schrödinger Equation”, J. of Comput. Phys., 1997, 134, 134–149.

    Article  MATH  MathSciNet  Google Scholar 

  10. R.A. Gonzales, R.A., Kang, S.-Y., Koltracht, I. and Rawitscher G., “Integral Equation Method for Coupled Schrödinger Equations”, J. of Comput. Phys., 1999, 153, 160–202.

    Article  MATH  Google Scholar 

  11. Gottlieb, D. and Orszag, S., “Numerical Analysis of Spectral Methods”, SIAM, Philadelphia, 1977.

    Google Scholar 

  12. Greengard, L. and Rokhlin, V. Commun. Pure Appli. Math 1991, 44, 419.

    Article  MATH  MathSciNet  Google Scholar 

  13. Golak, J., Skibinski, R., Witala, H., Glöckle, W., Nogga, A., Kamada, H., “Electron and photon scattering on three-nucleon bound A states”, 2005, Phys. Rep. 415, 89–205.

    Google Scholar 

  14. Golub, G.H., and Van Loan, C.H., “Matrix Computations”, page 10, Johns Hopkins Press, Baltimore, 1983.

    Google Scholar 

  15. Kang, S.-Y., I. Koltracht, I. and Rawitscher, G., “Nyström-Clenshaw-Curtis Quadrature for Integral Equations with Discontinuous Kernels”, 2002, Math. Comput. 72, 729–756.

    Google Scholar 

  16. Landau, R.H., Quantum Mechanics II, John Wiley & Sons, 1990.

    Google Scholar 

  17. Rawitscher G.H. et al., “Comparison of Numerical Methods for the Calculation of Cold Atom Collisions,” J Chem. Phys., 1999, 111, 10418–10426.

    Article  Google Scholar 

  18. Rawitscher, G. and Gloeckle, W., “Integrals of the two-body T matrix in configuration space”, 2008, Phys. Rev A 77, 012707 (1–7).

    Google Scholar 

  19. Rawitscher, G. “Calculation of the two-body scattering K-matrix in configuration space by an adaptive spectral method”, 2009, J. Phys. A: Math. Theor. 42, 015201.

    Google Scholar 

  20. Rawitscher, G., Kang, S.-Y. and I. Koltracht, I., “A novel method for the solution of the Schrödinger equation in the presence of exchange terms”, 2003, J. Chem. Phys., 118, 9149–9156.

    Google Scholar 

  21. Rawitscher, G. and Koltracht, I., “A spectral integral method for the solution of the Faddeev equations in configuration space”, Proceedings of the 17th International IUPAP conference on Few Body problems in physics, 2004, Nucl. Phys. A, 737 CF, pp. S314–S316.

    Google Scholar 

  22. Rawitscher, G. and I. Koltracht, “Description of an efficient Numerical Spectral Method for Solving the Schrödinger Equation”, Computing in. Sc. and Eng., 2005, 7, 58.

    Article  Google Scholar 

  23. Rawitscher, G. and I. Koltracht, “Can the CDCC be improved? A proposal”, Proceedings of the NUSTAR05 conference, J. of Phys. G: Nuclear and particle physics, 31, p. S1589–S1592.

    Google Scholar 

  24. Rawitscher, G. and I. Koltracht I., “An economial method to calculate eigenvalues of the Schrödinger equation”, Eur. J. Phys. 2006, 27, 1179–1192.

    Article  Google Scholar 

  25. Rawitscher, G., Merow C., Nguyen M., Simbotin, I., “Resonances and quantum scattering for the Morse potential as a barrier”, Am. J. Phys. 2002, 70, 935–944.

    Article  Google Scholar 

  26. Witala, H. Golak, J.; Skibinski, R.; Glockle, W.; Nogga, A.; Epelbaum, E.; Kamada, H.; Kievsky, A.; Viviani, M., “Testing nuclear forces by polarization transfer coefficients in \( d(\vec p,\vec p)d \) and \( d(\vec p,\vec d)p \) reactions at E (lab) P =22.7 MeV”, 2006, Phys. Rev. C (Nuclear Physics), 73, 44004-1-7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Communicated by L. Rodman.

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Rawitscher, G.H. (2010). Applications of a Numerical Spectral Expansion Method to Problems in Physics; a Retrospective. In: Ball, J.A., Bolotnikov, V., Rodman, L., Spitkovsky, I.M., Helton, J.W. (eds) Topics in Operator Theory. Operator Theory: Advances and Applications, vol 203. Birkhäuser Basel. https://doi.org/10.1007/978-3-0346-0161-0_16

Download citation

Publish with us

Policies and ethics