Skip to main content

On the Eigenvalues of the Lax Operator for the Matrix-valued AKNS System

  • Conference paper
Topics in Operator Theory

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 203))

Abstract

We consider the eigenvalues of the matrix AKNS system and establish bounds on the location of eigenvalues and criteria for the nonexistence of eigenvalues. We also identify properties of the system which guarantee that eigenvalues cannot lie on the imaginary axis or can only lie on the imaginary axis. Moreover, we study the deficiency indices of the underlying non-selfadjoint differential operator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.J. Ablowitz, D.J. Kaup, A.C. Newell, and H. Segur, The inverse scattering transform-Fourier analysis for nonlinear problems, Stud. Appl. Math. 53 (1974), 249–315.

    MathSciNet  Google Scholar 

  2. M.J. Ablowitz, B. Prinari, and A.D. Trubatch, Discrete and continuous nonlinear Schrödinger systems, Cambridge Univ. Press, Cambridge, 2004.

    MATH  Google Scholar 

  3. M.J. Ablowitz and H. Segur, Solitons and the inverse scattering transform, SIAM, Philadelphia, 1981.

    MATH  Google Scholar 

  4. F.V. Atkinson, Discrete and continuous boundary problems, Academic Press, New York, 1964.

    MATH  Google Scholar 

  5. T.Y. Azizov and I.S. Iokhvidov, Linear operators in spaces with an indefinite metric, John Wiley & Sons, New York, 1989.

    Google Scholar 

  6. J. Bronski, Semiclassical eigenvalue distribution of the Zakharov-Shabat eigenvalue problem, Physica 97 (1996), 376–397.

    MATH  MathSciNet  Google Scholar 

  7. H. Behncke and D.B. Hinton, Eigenfunctions, deficiency indices and spectra of oddorder differential operators, Proc. London Math. Soc. 97 (2008), 425–449.

    Article  MATH  MathSciNet  Google Scholar 

  8. B.M. Brown, W.D. Evans, and M. Plum, Titchmarsh-Sims-Weyl theory for complex Hamiltonian systems, Proc. London Math. Soc. 87 (2003), 419–450.

    Article  MATH  MathSciNet  Google Scholar 

  9. R.C. Cascaval, F. Gesztesy, H. Holden, and Y. Latushkin, Spectral analysis of Darboux transformations for the focusing NLS hierarchy, J. Anal.Math. 93 (2004), 139–197.

    Article  MATH  MathSciNet  Google Scholar 

  10. R.C. Cascaval and F. Gesztesy, J-self-adjointness of a class of Dirac-type operators, J. Math. Anal. Appl. 294 (2004), 113–121.

    Article  MATH  MathSciNet  Google Scholar 

  11. R.S. Chisholm and W.N. Everitt, On bounded integral operators in the space of integrable-square functions, Proc. Roy. Soc. Edinburgh Sect. A 69 (1970/71), 199–204.

    MathSciNet  Google Scholar 

  12. W.A. Coppel, Stability and asymptotic behavior of differential equations, Heath, Boston, 1965.

    MATH  Google Scholar 

  13. F. Demontis, Direct and inverse scattering of the matrix Zakharov-Shabat system, Ph.D. thesis, University of Cagliari, Italy, 2007.

    Google Scholar 

  14. F. Demontis and C. van der Mee, Marchenko equations and norming constants of the matrix Zakharov-Shabat system, Operators and Matrices 2 (2008), 79–113.

    MATH  MathSciNet  Google Scholar 

  15. D.E. Edmunds and W.E. Evans, Spectral theory and differential operators, Clarendon Press, Oxford, 1987.

    MATH  Google Scholar 

  16. I.M. Glazman, Direct methods of qualitative spectral analysis of singular differential operators, Moscow, 1963. English Translation by Israel Program for Scientific Translations, 1965.

    Google Scholar 

  17. D. Hinton and K. Shaw, Titchmarsh-Weyl theory for Hamiltonian systems, in Spectral theory of differential operators, I.W. Knowles and R.T. Lewis, Eds., North Holland, New York, 1981.

    Google Scholar 

  18. T. Kato, Perturbation theory for linear operators, Springer, New York, 1976.

    MATH  Google Scholar 

  19. D.J. Kaup and L.R. Scacca, Generation of 0p pulses from a zero-area pulse in coherent pulse propagation, J. Opt. Soc. Am. 70 (1980), 224–230.

    Article  Google Scholar 

  20. M. Klaus, Dirac operators with several Coulomb singularities, Helv. Phys. Acta 53 (1980), 463–482.

    MathSciNet  Google Scholar 

  21. M. Klaus and J.K. Shaw, Influence of pulse shape and frequency chirp on stability of optical solitons, Optics Commun. 197 (2001), 491–500.

    Article  Google Scholar 

  22. M. Klaus and J.K. Shaw, Purely imaginary eigenvalues of Zakharov-Shabat systems, Phys. Rev. E. (3) 65, (2002), article 036607.

    Google Scholar 

  23. M. Klaus and J.K. Shaw, On the eigenvalues of Zakharov-Shabat systems, SIAM J. Math. Anal. 34 (2003), 759–773.

    Article  MATH  MathSciNet  Google Scholar 

  24. M. Klaus, Remarks on the eigenvalues of the Manakov system, Mathematics and computers in simulation 69 (2005), 356–367.

    Article  MATH  MathSciNet  Google Scholar 

  25. M. Klaus, On the Zakharov-Shabat eigenvalue problem, in Contemporary Mathematics 379, 21–45, Amer. Math. Soc., Providence, RI, 2005.

    Google Scholar 

  26. M. Klaus and B. Mityagin, Coupling constant behavior of eigenvalues of Zakharov-Shabat systems, J. Math. Phys. 48 (2007), article 123502.

    Google Scholar 

  27. A. Krall, M(?) theory for singular Hamiltonian systems with two singular endpoints, 20 (1989), 701–715.

    MATH  MathSciNet  Google Scholar 

  28. A. Krall, A limit-point criterion for linear Hamiltonian systems, Applicable Analysis 61 (1996), 115–119.

    Article  MATH  MathSciNet  Google Scholar 

  29. P. Lancaster, Theory of Matrices, Academic Press, New York, 1969.

    MATH  Google Scholar 

  30. P.D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure and Appl. Math. 21 (1968), 467–490.

    Article  MATH  MathSciNet  Google Scholar 

  31. B.M. Levitan and I.S. Sargsjan, Sturm-Liouville and Dirac operators, Kluwer Acad. Publ., Dordrecht, 1991.

    Google Scholar 

  32. S.V. Manakov, On the theory of two-dimensional stationary self-focusing of electromagnetic waves, Sov. Phys. JETP 38 (1974), 248–253.

    MathSciNet  Google Scholar 

  33. B. Muckenhoupt, Hardy’s inequality with weights, Studia Math. 44 (1972), 31–38.

    MATH  MathSciNet  Google Scholar 

  34. L. Mirsky, An introduction to linear algebra, Clarendon Press, Oxford, 1955.

    MATH  Google Scholar 

  35. G. Nenciu, Self-adjointness and invariance of the essential spectrum for Dirac operators defined as quadratic forms, Comm. Math. Phys. 48 (1976), 235–247.

    Article  MATH  MathSciNet  Google Scholar 

  36. J. Qi, Non-limit-circle criteria for singular Hamiltonian differential systems, J.Math. Anal. Appl. 305 (2005), 599–616.

    Article  MATH  MathSciNet  Google Scholar 

  37. D. Race, The theory of J-self-adjoint extensions of J-symmetric operators, J. Differential Equations 57 (1985), 258–274.

    Article  MATH  MathSciNet  Google Scholar 

  38. M. Reed and B. Simon, Methods of modern mathematical physics, Academic Press, 1978.

    Google Scholar 

  39. J. Satsuma and N. Yajima, Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media, Suppl. Prog. Theor. Phys. 55 (1974), 284–306.

    Article  MathSciNet  Google Scholar 

  40. J. Villarroel, M.J. Ablowitz, and B. Prinari, Solvability of the direct and inverse problems for the nonlinear Schrödinger equation, Acta Applicandae Mathematicae 87 (2005), 245–280.

    Article  MATH  MathSciNet  Google Scholar 

  41. M.I. Vishik, On general boundary problems for elliptic differential equations, Amer. Math. Soc. Transl. (2) 24 (1963), 107–172.

    Google Scholar 

  42. T. Ważewski, Sur la limitation des integrales des syst`emes d’equations differentielles lineaires ordinaires, Studia Math. 10 (1948), 48–59.

    MATH  MathSciNet  Google Scholar 

  43. J. Weidmann, Spectral theory of ordinary differential operators, Lect. Notes in Math. 1258, Springer, New York, 1987.

    Google Scholar 

  44. V.E. Zakharov and A.B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys. J. Exp. Theor. Phys. 34 (1972), 62–69.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Israel Gohberg on the occasion of his eightieth birthday

Communicated by J.A. Ball

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Klaus, M. (2010). On the Eigenvalues of the Lax Operator for the Matrix-valued AKNS System. In: Ball, J.A., Bolotnikov, V., Rodman, L., Spitkovsky, I.M., Helton, J.W. (eds) Topics in Operator Theory. Operator Theory: Advances and Applications, vol 203. Birkhäuser Basel. https://doi.org/10.1007/978-3-0346-0161-0_12

Download citation

Publish with us

Policies and ethics