Advertisement

Dominating the Commutator

  • David Wenzel
Part of the Operator Theory: Advances and Applications book series (OT, volume 202)

Abstract

The values of the smallest possible constant C in the inequality ∥XY -YX∥ = CX∥∥Y∥ on the space of real or complex n×n-matrices are investigated for different norms.

Mathematics Subject Classification (2000)

Primary 15A45 Secondary 15A69 

Keywords

Commutator operator norm Schatten norm inequality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Böttcher and D. Wenzel, How big can the commutator of two matrices be and how big is it typically? Linear Algebra Appl. 403 (2005), pp. 216–228.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    A. Böttcher and D. Wenzel, The Frobenius norm and the commutator, Linear Algebra Appl. 429 (2008), pp. 1864–1885.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    L. Grafakos, Classical Fourier Analysis, Graduate Texts in Mathematics (2008), Springer, New York.zbMATHGoogle Scholar
  4. [4]
    L. László, Proof of Böttcher and Wenzel’s conjecture on commutator norms for 3-by-3 matrices, Linear Algebra Appl. 422 (2007), pp. 659–663.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Zhiqin Lu, Proof of the normal scalar curvature conjecture, Available from: arxiv:0711.3510v1 [math.DG] 22 November 2007.Google Scholar
  6. [6]
    Seak-Weng Vong and Xiao-Qing Jin, Proof of Böttcher and Wenzel’s conjecture, Oper. Matrices 2 (2008), pp. 435–442.zbMATHMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2010

Authors and Affiliations

  • David Wenzel
    • 1
  1. 1.Department of MathematicsChemnitz University of TechnologyChemnitzGermany

Personalised recommendations