Some Exponential Inequalities for Semisimple Lie Groups

  • Tin-Yau Tam
Conference paper
Part of the Operator Theory: Advances and Applications book series (OT, volume 202)


Let ∥ · ∥ be any give unitarily invariant norm. We obtain some exponential relations in the context of semisimple Lie group. On one hand they extend the inequalities (1) ∥e A ∥ ≤ ∥e Re A∥ for all A ∈ ∝ n ×n where Re A denotes the Hermitian part of A, and (2) ∥e A+B ∥ ≤ ∥e A e B ∥, where A and B are n×n Hermitian matrices. On the other hand, the inequalities of Weyl, Ky Fan, Golden-Thompson, Lenard-Thompson, Cohen, and So-Thompson are recovered. Araki’s relation on (e A/2 e R e A/2) r and e rA/2 e rB e rA/2, where A,B are Hermitian and ∈ ℝ, is extended.


Singular values eigenvalue moduli spectral radius pre-order 

Mathematics Subject Classification (2000)

Primary 15A45 22E46 Secondary 15A42 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Araki, On an inequality of Lieb and Thirring, Lett. Math. Phys., 19 (1990) 167–170.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    T. Ando and F. Hiai, Log majorization and complementary Golden-Thompson type inequalities, Linear Algebra Appl., 197/198 (1994) 113–131.CrossRefMathSciNetGoogle Scholar
  3. [3]
    R. Bhatia, Matrix Analysis, Springer, New York, 1997.Google Scholar
  4. [4]
    J.E. Cohen, Spectral inequalities for matrix exponentials, Linear Algebra Appl., 111 (1988) 25–28.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    J.J. Duistermaat and J.A.C. Kolk, Lie Groups, Springer, Berlin, 2000.zbMATHGoogle Scholar
  6. [6]
    S. Golden, Lower bounds for the Helmholtz function, Phys. Rev., 137 (1965) B1127–B1128.CrossRefMathSciNetGoogle Scholar
  7. [7]
    B.C. Hall, Lie Groups, Lie Algebras, and Representations, Springer, New York, 2003.zbMATHGoogle Scholar
  8. [8]
    E. Heinz, Beitrage zur Störungstheorie der Spektralzerlegung, Math. Ann., 123 (1951), 415–438.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, 1978.zbMATHGoogle Scholar
  10. [10]
    F. Hiai, Trace norm convergence of exponential product formula, Lett. Math. Phys., 33 (1995), 147–158.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    R.A. Horn and C.R. Johnson, Topics in Matrix Analysis, Cambridge Univ. Press, 1991.Google Scholar
  12. [12]
    J.E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York, 1972.zbMATHGoogle Scholar
  13. [13]
    A.W. Knapp, Lie Groups Beyond an Introduction, Birkhäuser, Boston, 1996.Google Scholar
  14. [14]
    B. Kostant, On convexity, the Weyl group and Iwasawa decomposition, Ann. Sci. Ecole Norm. Sup. (4), 6 (1973) 413–460.zbMATHMathSciNetGoogle Scholar
  15. [15]
    S. Lang, Algebra, Addison-Wesley, Reading, Mass., 1965.zbMATHGoogle Scholar
  16. [16]
    A. Lenard, Generalization of the Golden-Thompson inequality Tr(e A e B) ≥ Tr e A+B, Indiana Univ. Math. J. 21 (1971/1972) 457–467.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    M. Reed and B. Simon, Methods of Modern Mathematical Physics, I, Functional Analysis, second edition, Academic Press, New York, 1980.zbMATHGoogle Scholar
  18. [18]
    W. So and R.C. Thompson, Singular values of matrix exponentials, Linear and Multilinear Algebra, 47 (2000) 249–258.zbMATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    T.Y. Tam, Heinz-Kato’s inequalities for semisimple Lie groups, Journal of Lie Theory, 18 (2008) 919–931.zbMATHMathSciNetGoogle Scholar
  20. [20]
    T.Y. Tam and H. Huang, An extension of Yamamoto’s theorem on the eigenvalues and singular values of a matrix, Journal of Math. Soc. Japan, 58 (2006) 1197–1202.zbMATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    C.J. Thompson, Inequality with applications in statistical mechanics, J. Mathematical Phys., 6 (1965) 1812–1813.CrossRefMathSciNetGoogle Scholar
  22. [22]
    C.J. Thompson, Inequalities and partial orders on matrix spaces, Indiana Univ. Math. J., 21 (1971/72) 469–480.zbMATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    B. Wang and M. Gong, Some eigenvalue inequalities for positive semidefinite matrix power products, Linear Algebra Appl. 184 (1993) 249–260.zbMATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    F. Warmer, Foundation of Differentiable Manifolds and Lie Groups, Scott Foresman and Company, 1971.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2010

Authors and Affiliations

  • Tin-Yau Tam
    • 1
  1. 1.Department of Mathematics and StatisticsAuburn UniversityUSA

Personalised recommendations