Infinite Hankel Block Matrices, Extremal Problems

  • Lev Sakhnovich
Conference paper
Part of the Operator Theory: Advances and Applications book series (OT, volume 202)


In this paper we use the matrix analogue of eigenvalue ρ min 2 to formulate and to solve the extremal Nehari problem. Our approach coincides with Arov, Adamyan, Krein approach when ρ min 2 is a scalar matrix.


Matrix Nehari problem minimal solution matrix analogue of eigenvalue Communicated by V. Bolotnikov 

Mathematics Subject Classification (2000)

Primary 15A57 Secondary 47B10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    V.M. Adamyan, D.Z. Arov and M.G. Krein, Infinite Hankel Block Matrices and Related Extension Problems, Amer. Math. Soc. Transl. 111 (1978), 133–156.zbMATHGoogle Scholar
  2. [2]
    B. Fritzsche, B. Kirstein and L.A. Sakhnovich, Extremal Classical Interpolation Problems (matrix case), Lin. Alg. Appl. 430 (2009), 762–781.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    J.W. Helton and L.A. Sakhnovich, Extremal Problems of Interpolation Theory, Rocky Mount. J. Math., 35 (2005), 819–841.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Z. Nehari, On Bounded Linear Forms, Ann. of Math. 65 (1957), 153–162.CrossRefMathSciNetGoogle Scholar
  5. [5]
    V.V. Peller and N.J. Joung, Superoptimal Analytic Approximation of Matrix Functions, J. Funct. Anal. 120 (1994), 300–343.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    A.C.M. Ran and M.C.B. Reurings A Nonlinear Matrix Equation Connected to Interpolation Theory, Lin. Alg. Appl. 379 (2004), 289–302.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    L.A. Sakhnovich, Interpolation Theory and its Applications, Kluwer, Dordrecht, 1997.zbMATHGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2010

Authors and Affiliations

  • Lev Sakhnovich
    • 1
  1. 1.MilfordUSA

Personalised recommendations