The Spectrum of a Composition Operator and Calderón’s Complex Interpolation

  • Matthew A. Pons
Part of the Operator Theory: Advances and Applications book series (OT, volume 202)


Using the method of complex interpolation due to A.P. Calderón, we give a general theorem for identifying the spectrum of an operator acting on a family of interpolation spaces. We then use this to determine the spectrum of certain composition operators acting on the weighted Dirichlet and analytic Besov spaces of the unit disk.


Composition operators complex interpolation spectra 

Mathematics Subject Classification (2000)

Primary 46B70 47B33 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B. Aupetit, A Primer on Spectral Theory, Springer-Verlag, Berlin-Heidelberg, 1991.Google Scholar
  2. [2]
    B. Barnes, Interpolation of spectrum of bounded operators on Lebesgue spaces, Rocky Mountain J. Math. 20 (1987), 359–378.Google Scholar
  3. [3]
    B. Barnes, Continuity properties of the spectrum of operators on Lebesgue spaces, Proc. Amer. Math. Soc. 106 (1989), 415–421.MathSciNetGoogle Scholar
  4. [4]
    A. Calderón, Intermediate spaces and interpolation, the complex method, Stud. Math. 24 (1964), 113–190.zbMATHGoogle Scholar
  5. [5]
    J. Conway, A Course in Functional Analysis, Springer-Verlag, New York, 1990.Google Scholar
  6. [6]
    C. Cowen, Composition operators on II 2, J. Operator Theory 9 (1983), 77–106.zbMATHMathSciNetGoogle Scholar
  7. [7]
    C. Cowen and B. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, 1995.zbMATHGoogle Scholar
  8. [8]
    M. Cwikel, Complex interpolation spaces, a discrete definition and reiteration, Indiana Univ. Math. J. 27 (1978), 1005–1009.CrossRefMathSciNetGoogle Scholar
  9. [9]
    R. Donaway, Norm and essential norm estimates of composition operators on Besov type spaces, Ph.D. thesis, The University of Virginia, 1999.Google Scholar
  10. [10]
    E. Gallardo-Gutiérrez and A. Montes-Rodríguez, Adjoints of linear fractional composition operators on the Dirichlet space, Math. Ann. 327 (2003), 117–134.CrossRefMathSciNetGoogle Scholar
  11. [11]
    E. Gallardo-Gutiérrez and A. Montes-Rodríguez, The role of the spectrum in the cyclic behavior of composition operators, Mem. Amer. Math. Soc. 167 (2004), no. 791, x + 81 pp.Google Scholar
  12. [12]
    D. Herrero and K. Saxe Webb, Spectral continuity in complex interpolation, Math. Balkanica 3 (1989), 325–336.zbMATHMathSciNetGoogle Scholar
  13. [13]
    W. Higdon, The spectra of composition operators from linear fractional maps acting upon the Dirichlet space, J. Func. Anal. 220 (2005), 55–75.CrossRefGoogle Scholar
  14. [14]
    E. Hille and R. Phillips, Functional Analysis and Semi-groups, revised ed., American Math. Society, Providence, 1957.Google Scholar
  15. [15]
    B. MacCluer and K. Saxe, Spectra of composition operators on the Bloch and Bergman spaces, Isr. J. Math. 128 (2002), 325–354.CrossRefGoogle Scholar
  16. ai][16]
    B. MacCluer and J. Shapiro, Angular derivatives and compact composition operators on the Hardy and Bergman spaces, Canadian J. Math. 38 (1986), 878–906.CrossRefGoogle Scholar
  17. [17]
    J. McCarthy, Geometric interpolation between Hilbert spaces, Ark. Mat. 30 (1992), no. 2, 321–330.CrossRefMathSciNetGoogle Scholar
  18. [18]
    E. Nordgren, Composition operators, Canadian J. Math. 20 (1968), 442–449.zbMATHCrossRefGoogle Scholar
  19. [19]
    M. Pons, Composition operators on Besov and Dirichlet type spaces, Ph.D. thesis, The University of Virginia, 2007.Google Scholar
  20. [20]
    K. Saxe, Compactness-like operator properties preserved by complex interpolation, Ark. Mat. 35 (1997), 353–362.CrossRefMathSciNetGoogle Scholar
  21. [21]
    K. Saxe, On complex interpolation and spectral continuity, Stud. Math. 130 (1998), no. 3, 223–229.Google Scholar
  22. [22]
    M. Tjani, Compact composition operators on some Möbius invariant Banach spaces, Ph.D. thesis, Michigan State University, 1996.Google Scholar
  23. [23]
    K. Zhu, Operator Theory in Function Spaces, 2nd ed., American Mathematical Society, Providence, 2007.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2010

Authors and Affiliations

  • Matthew A. Pons
    • 1
  1. 1.Department of MathematicsNorth Central CollegeNapervilleUSA

Personalised recommendations