Advertisement

Conditions for Linear Dependence of Two Operators

  • Bojan Kuzma
  • Gorazd Lešnjak
  • Chi-Kwong Li
  • Tatjana Petek
  • Leiba Rodman
Part of the Operator Theory: Advances and Applications book series (OT, volume 202)

Abstract

The linear dependence property of two Hilbert space operators is expressed in terms of equality of size of values of certain sesquilinear and quadratic forms associated with the operators. The forms are based on qnumerical ranges.

Keywords

Hilbert space linear operators linear dependence numerical values generalized numerical range 

Mathematics Subject Classification (2000)

Primary 47A12 Secondary 47A99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W.-S. Cheung and N.-K. Tsing, The C-numerical range of matrices is star-shaped, Linear and Multilinear Algebra 41 (1996), 245–250.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    M.-T. Chien and N. Nakazato, Davis-Wielandt shell and q-numerical range, Linear Algebra Appl. 340 (2002), 15–31.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    M.-D. Choi, C.-K. Li, and T.-Y. Poon, Some convexity features associated with unitary orbits, Canadian J. Mathematics 55 (2003), 91–111.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    G. Dirr, U. Helmke, H. Kleinsteuber, and Th. Schulte-Herbrüggen, Relative C-numerical ranges for applications in quantum control and quantum information, Linear Multilinear Algebra 56 (2008), 27–51.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    M. Goldberg and E.G. Straus, Norm properties of C-numerical radii, Linear Algebra Appl. 24 (1979), 113–131.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    U. Helmke, K. Hüper, J.B. Moore, and Th. Schulte-Herbrüggen, Gradient flows computing the C-numerical range with applications in NMR spectroscopy, J. Global Optim. 23 (2002), 283–308.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    R.A. Horn and C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.zbMATHGoogle Scholar
  8. [8]
    M.S. Jones, A note on the shape of the generalized C-numerical range, Linear and Multilinear Algebra 31 (1992), 81–84.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    B. Kuzma, C.-K. Li, G. Lešnjak, T. Petek, and L. Rodman, Norm preservers of Jordan products, paper in preparation.Google Scholar
  10. [10]
    C.-K. Li, A survey on linear preservers of numerical ranges and radii. Taiwanese J. Math. 5 (2001), 477–496.zbMATHMathSciNetGoogle Scholar
  11. [11]
    C.-K. Li, P.P. Mehta, and L. Rodman, A generalized numerical range: the range of a constrained sesquilinear form, Linear and Multilinear Algebra 37 (1994), 25–49.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    C.-K. Li and L. Rodman, Multiplicative preservers of C-numerical ranges and radii Linear and Multilinear Algebra 52 (2004), 265–279.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    C.-K. Li, B.-S. Tam, and N.-K. Tsing, Linear operators preserving the (p, q)-numerical range, Linear Algebra Appl. 110 (1988), 75–89.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    Th. Schulte-Herbrüggen, G. Dirr, U. Helmke, and S.J. Glaser, The significance of the C-numerical range and the local C-numerical range in quantum control and quantum information, Linear and Multilinear Algebra 56 (2008), 3–26.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    B.-S. Tam, A simple proof of the Goldberg-Straus theorem on numerical radii, Glasgow Math. J. 28 (1986), 139–141.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2010

Authors and Affiliations

  • Bojan Kuzma
    • 1
  • Gorazd Lešnjak
    • 2
  • Chi-Kwong Li
    • 3
  • Tatjana Petek
    • 4
  • Leiba Rodman
    • 3
  1. 1.Inst. of Mathematics, Physics, and MechanicsUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Department of Electrical Engineering and Computer ScienceUniversity of MariborMariborSlovenia
  3. 3.Department of MathematicsCollege of William and MaryWilliamsburgUSA
  4. 4.University of MariborFERIMariborSlovenia

Personalised recommendations