Advertisement

WEighted Composition Operators on the Bloch Space of a Bounded Homogeneous Domain

  • Robert F. Allen
  • Flavia Colonna
Part of the Operator Theory: Advances and Applications book series (OT, volume 202)

Abstract

In this paper, we present the current results in the study of weighted composition operators on the Bloch space of bounded homogeneous domains in ℂ n with particular emphasis on the issues of boundedness and compactness. We also discuss the bounded and the compact weighted composition operators from the Bloch space to the Hardy space H.

Keywords

Weighted composition operators Bloch space Homogeneous domains 

Mathematics Subject Classification (2000)

47B38 32A18 30D45 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.F. Allen and F. Colonna, Isometries and spectra of multiplication operators on the Bloch space, Bull. Austral. Math. Soc., 79 (2009), 147–160.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    -, On the isometric composition operators on the Bloch space in ℂ n, J. Math. Anal. Appl., 355(2) (2009), 675–zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    -, Multiplication operators on the Bloch space of bounded homogeneous domains, Comput. Methods and Funct. Theory, 9(2) (2009), 679–693.zbMATHMathSciNetGoogle Scholar
  4. [4]
    J.M. Anderson, J. Clunie and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 279 (1974), 12–37.MathSciNetGoogle Scholar
  5. [5]
    S. Banach, Théorie des opérations linéaires, Chelsea, Warsaw, (1932).Google Scholar
  6. [6]
    L. Brown and A.L. Shields, Multipliers and cyclic vectors in the Bloch space, Michigan Math. J. 38, (1991), 141–146.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    J. Cima, The basic properties of Bloch functions, Internat. J. Math. Math. Sci. 3 (1979), 369–413.CrossRefMathSciNetGoogle Scholar
  8. [8]
    J. Cima and W. Wogen, On isometries of the Bloch space, Illinois J. Math. 24 (1980), 313–316.zbMATHMathSciNetGoogle Scholar
  9. [9]
    J.M. Cohen and F. Colonna, Bounded holomorphic functions on bounded symmetric domains, Trans. Amer. Math. Soc. 343 (1994), 135–156.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    -, Isometric composition operators on the Bloch space in the polydisk, Contemp. Math., 454 (2008), 9–21.Google Scholar
  11. [11]
    F. Colonna, Characterisation of the isometric composition operators on the Bloch space, Bull. Austral. Math. Soc. 72 (2005), 283–290.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    M. El-Gebeily and J. Wolfe, Isometries of the disk algebra, Proc. Amer. Math. Soc. 93 (1985), 697–702.zbMATHMathSciNetGoogle Scholar
  13. [13]
    F. Forelli, The isometries on H p, Canadian J. Math 16 (1964), 721–728.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    K.T. Hahn, Holomorphic mappings of the hyperbolic space in the complex Euclidean space and the Bloch theorem, Canad. J. Math 27 (1975), 446–458.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York (1962).Google Scholar
  16. [16]
    T. Hosokawa, K. Izuchi, S. Ohno, Topological structure of the space of weighted composition operators on H , Integr. Equ. Oper. Theory 53 (2005), 509–526.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    C.J. Kolaski, Isometries of weighted Bergman spaces, Canad. J. Math 34 (1982), 910–915.zbMATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    S.G. Krantz and D. Ma, On isometric isomorphisms of the Bloch space on the unit ball of ℂ n, Michigan Math. J. 36 (1989), 173–zbMATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    S.X. Li, Essential norm of the weighted composition operators on the Bloch spaces over the polydisk (Chinese, English and Chinese summary), Acta Math. Sinica (Chin. Ser.) 51 (2008), no. 4, 655–662.zbMATHMathSciNetGoogle Scholar
  20. [20]
    S. Li and S. Stević, Weighted composition operators between H and α-Bloch spaces in the unit ball, Taiwanese J. Math. 12 (2008), 1625–1639.zbMATHMathSciNetGoogle Scholar
  21. [21]
    B.D. MacCluer and R. Zhao, Essential norms of weighted composition operators between Bloch-type spaces, Rocky Mountain J. of Math. 33 (2003), 1437–1457.zbMATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    M. Martín and D. Vutokić, Isometries of the Bloch space among the composition operators, Bull. London Math. Soc. 39 (2007), 151–155.zbMATHCrossRefGoogle Scholar
  23. [23]
    S. Ohno and R. Zhao, Weighted composition operators on the Bloch space, Bull. Austral. Math. Soc. 63 (2001), 177–185.zbMATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    Ch. Pommerenke, On Bloch functions, J. London Math. Soc. 2 (1970), 689–695.zbMATHMathSciNetGoogle Scholar
  25. [25]
    J.H. Shi and L. Luo, Composition operators on the Bloch space of several complex variables, Acta Math. Sinica (N.S.) 16 (2000), 85–98.zbMATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    R.M. Timoney, Bloch functions in several complex variables I, Bull. London Math. Soc. 12 (1980), 241–267.zbMATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    -, Bloch functions in several complex variables II, J. Reine Angew. Math. 319 (1980), 1–22.MathSciNetGoogle Scholar
  28. [28]
    M. Tjani, Compact composition operators on Möbius invariant Banach spaces, Ph.D. dissertation, Michigan State University (1996).Google Scholar
  29. [29]
    C. Xiong, Norm of composition operators on the Bloch space, Bull. Austral. Math. Soc. 70 (2004), 293–299.zbMATHCrossRefMathSciNetGoogle Scholar
  30. [30]
    G. Zhang, Bloch constants of bounded symmetric domains, Trans. Amer. Math. Soc. 349 (1997), 2941–2949.zbMATHCrossRefMathSciNetGoogle Scholar
  31. [31]
    Z. Zhou and R. Chen, Weighted composition operators from F(p, q, s) to Bloch type spaces on the unit ball, Internat. J. of Math. 19 (2008), 899–926.zbMATHCrossRefMathSciNetGoogle Scholar
  32. [32]
    -, Weighted composition operators between different Bloch-type Spaces in polydisk, (preprint) (http://arxiv.org/abs/math/0503622v2).Google Scholar
  33. [33]
    K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Springer-Verlag, New York (2004).Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2010

Authors and Affiliations

  • Robert F. Allen
    • 1
  • Flavia Colonna
    • 2
  1. 1.Department of MathematicsUniversity of Wisconsin - La CrosseLa CrosseUSA
  2. 2.Department of Mathematical SciencesGeorge Mason UniversityFairfaxUSA

Personalised recommendations