Advertisement

Almost Periodic Polynomial Factorization of Some Triangular Matrix Functions

  • Yuri I. Karlovich
  • Ilya M. Spitkovsky
Part of the Operator Theory: Advances and Applications book series (OT, volume 202)

Abstract

Explicit factorization formulas are established for triangular almost periodic matrix functions with trinomial off diagonal terms in the so-called borderline cases. An application to a more general configuration via the Portuguese transformation also is given.

Keywords

Almost periodic matrix functions factorization Portuguese transformation 

Mathematics Subject Classification (2000)

Primary 47A68 Secondary 42A75 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M.A. Bastos, Yu.I. Karlovich, I.M. Spitkovsky, and P.M. Tishin, On a new algorithm for almost periodic factorization, Recent progress in operator theory (Regensburg, 1995) (I. Gohberg, R. Mennicken, and C. Tretter, eds.), Operator Theory: Advances and Applications, vol. 103, Birkhäuser Verlag, Basel and Boston, 1998, pp. 53–74.Google Scholar
  2. [2]
    A. Böttcher, Yu.I. Karlovich, and I.M. Spitkovsky, Convolution operators and factorization of almost periodic matrix functions, Operator Theory: Advances and Applications, vol. 131, Birkhäuser Verlag, Basel and Boston, 2002.Google Scholar
  3. [3]
    M.C. Câmara, A.F. dos Santos, and M.C. Martins, A new approach to factorization of a class of almost-periodic triangular symbols and related Riemann-Hilbert problems, J. Funct. Anal. 235 (2006), no. 2, 559–592.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    M.C. Câmara, Yu.I. Karlovich, and I.M. Spitkovsky, Almost periodic factorization of some triangular matrix functions, Operator Theory: Advances and Applications, vol. 190, Birkhâuser Verlag, Basel and Boston, 2009, pp. 171–190.Google Scholar
  5. [5]
    I.P. Cornfeld, S.V. Fomin, and Ya.G. Sinaî, Ergodic theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 245, Springer-Verlag, New York, 1982, Translated from the Russian by A. B. Sosinskiî.Google Scholar
  6. [6]
    Yu.I. Karlovich and I.M. Spitkovsky, Factorization of almost periodic matrix functions, J. Math. Anal. Appl. 193 (1995), 209–232.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Yu.I. Karlovich, I.M. Spitkovsky, and R.A. Walker, Almost periodic factorization of block triangular matrix functions revisited, Linear Algebra Appl. 293 (1999), 199–232.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    D. Quint, L. Rodman, and I.M. Spitkovsky, New cases of almost periodic factorization of triangular matrix functions, Michigan Math. J. 45 (1998), 73–102.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    A. Rastogi, L. Rodman, and I.M. Spitkovsky, Almost periodic factorization of 2 × 2 matrix functions: New cases of off diagonal spectrum, Operator Theory: Advances and Applications 202, Birkhäuser Verlag, Basel and Boston, 2010, pp. 469–487 (this volume).Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2010

Authors and Affiliations

  • Yuri I. Karlovich
    • 1
  • Ilya M. Spitkovsky
    • 2
  1. 1.Facultad de Ciencias UniversidadAutónoma del Estado de MorelosCuernavacaMexico
  2. 2.Department of MathematicsCollege of William and MaryWilliamsburgUSA

Personalised recommendations