Skip to main content

Theory vs. Experiment: Multiplicative Inequalities for the Numerical Radius of Commuting Matrices

  • Conference paper
Topics in Operator Theory

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 202))

Abstract

Under what conditions does the inequality w(TS) ≤ w(T)∥S∥, or the stronger w(TS) ≤ w(T)w(S), hold? Here w(T) denotes the numerical radius max{∣(Tu,u)∣: ∥u∥ = 1} of the matrix T and ∥S∥ is the operator norm; we assume that T and S are commuting n×n matrices. The questions posed above have a long history in matrix analysis and this paper provides new information, combining theoretical and experimental approaches. We study a class of matrices with simple structure to reveal a variety of new counterexamples to the first inequality. By means of carefully designed computer experiments we show that the first inequality may fail even for 3×3 matrices. We also obtain bounds on the constant that must be inserted in the second inequality when the matrices are 3 × 3. Among other results, we obtain new instances of the phenomenon discovered by Chkliar: for certain contractions C we may have w(C m+1) < w(C m).

Several results are taken from Schoch’s doctoral thesis [Sch2002]. Holbrook’s work was supported in part by NSERC of Canada. The authors also thank David Kribs for helpful discussions. This work was partially supported by CFI, OIT, and other funding agencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Ando, On a pair of commutative contractions. Acta Sci. Math. (Szeged) 24, pp. 88–90 (1963)

    MATH  MathSciNet  Google Scholar 

  2. C.A. Berger, A strange dilation theorem. Notices A.M.S. 12, p. 590 (1965)

    Google Scholar 

  3. R. Bouldin, The numerical range of a product II. J. Math, Anal. Appl. 33, pp. 212–219 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  4. C.A. Berger and J.G. Stämpfli, Mapping theorems for the numerical radius. Amer. J. Math. 89, pp. 1047–1055 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  5. V. Chkliar, Numerical radii of simple powers. Linear Algebra Appl. 265, pp. 119–121 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. M.-T. Chien and B.-S. Tam, Circularity of the numerical range. Linear Algebra Appl. 201, pp. 113–133 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. K.R. Davidson and J. Holbrook, Numerical radii for zero-one matrices. Michigan Math. J. 35, pp. 261–267 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  8. F.M. Goodman, P. de la Harpe, and V.F.R. Jones, Coxeter Graphs and Towers of Algebras. Springer-Verlag (1989)

    Google Scholar 

  9. K.E. Gustafson and D.K.M. Rao, Numerical Range. Springer-Verlag (1997)

    Google Scholar 

  10. J. Holbrook, Multiplicative properties of the numerical radius in operator theory. J. Reine Angew. Math. 237, pp. 166–174 (1969)

    MATH  MathSciNet  Google Scholar 

  11. J. Holbrook, Inequalities of von Neumann type for small matrices. Function Spaces (ed. K. Jarosz), pp. 189–193 (1992)

    Google Scholar 

  12. U. Haagerup and P. de la Harpe, The numerical radius of a nilpotent operator on a Hilbert space. Proceedings A.M.S. 115, pp. 371–379 (1992)

    Google Scholar 

  13. J. Holbrook and M. Omladič, Approximating commuting operators. Linear Algebra Appl. 327, pp. 131–149 (2001)

    Google Scholar 

  14. T. Kato, Some mapping theorems for the numerical range. Proc. Japan Acad. 41, pp. 652–655 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  15. D.S. Keeler, L. Rodman, and I.M. Spitkovsky, The numerical range of3 × 3 matrices. Linear Algebra Appl. 252, pp. 115–139 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. C.-K. Li and N.-S. Sze, Canonical forms, higher rank numerical ranges, totally isotropic subspaces, and matrix equations. Proc. Amer. Math. Soc. 136, pp. 3013–3023 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. V. Müller, The numerical radius of a commuting product. Michigan Math. J. 35, pp. 255–260 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  18. D.E.D. Marshall, An elementary proof of the Pick-Nevanlinna interpolation theorem. Michigan Math. J. 21, pp. 219–223 (1974)

    Google Scholar 

  19. M. Marcus and B.N. Shure, The numerical range of certain (0, 1)-matrices. Linear and Multilinear Algebra 7, no. 2, 111–120 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  20. K. Okubo and T. Ando, Operator radii of commuting products. Proc. A.M.S. 56, pp. 203–210 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  21. C. Pearcy, An elementary proof of the power inequality for the numerical radius. Michigan Math. J. 13, pp. 289–291 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  22. http://en.wikipedia.org/wiki/Particle_swarm_optimization

    Google Scholar 

  23. http://en.wikipedia.org/wiki/Simulated_annealing

    Google Scholar 

  24. J.-P. Schoch, Theory vs Experiment in Matrix Analysis. PhD thesis, University of Guelph, Canada (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Leiba Rodman on the occasion of his 60th birthday

Communicated by V. Bolotnikov.

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Holbrook, J., Schoch, JP. (2010). Theory vs. Experiment: Multiplicative Inequalities for the Numerical Radius of Commuting Matrices. In: Topics in Operator Theory. Operator Theory: Advances and Applications, vol 202. Birkhäuser Basel. https://doi.org/10.1007/978-3-0346-0158-0_14

Download citation

Publish with us

Policies and ethics