Curvature of Universal Bundles of Banach Algebras

  • Maurice J. Dupré
  • James F. Glazebrook
  • Emma Previato
Part of the Operator Theory: Advances and Applications book series (OT, volume 202)


Given a Banach algebra we construct a principal bundle with connection over the similarity class of projections in the algebra and compute the curvature of the connection. The associated vector bundle and the connection are a universal bundle with attendant connection. When the algebra is the linear operators over a Hilbert module, we establish an analytic diffeomorphism between the similarity class and the space of polarizations of the Hilbert module. Likewise, the geometry of the universal bundle over the latter is studied. Instrumental is an explicit description of the transition maps in each case which leads to the construction of certain functions. These functions are in a sense pre-determinants for the universal bundles in question.


Hilbert module Banach Grassmannian similarity class polarization universal bundle connection curvature 

Mathematics Subject Classification (2000)

Primary 46M20 37K20 Secondary 58B99 58B25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Andruchow, A. Larotonda, L. Recht and D. Stojanoff, Infinite dimensional homogeneous reductive spaces and finite index conditional expectations. Illinois J. Math. 41 (1997), 54–76.zbMATHMathSciNetGoogle Scholar
  2. [2]
    J. Ball and V. Vinnikov, Hardy spaces on a finite bordered Riemann surface, multiplicative operator model theory and Fourier anlaysis along a unimodular curve, in’ systems, approximation, singular integral operators, and related topics (Bordeaux, 2000)’ Operator Theory: Advances and Applications 129 (pp. 37–56), Birkhäuser Verlag, Basel, 2001.Google Scholar
  3. [3]
    J. Ball and V. Vinnikov, Lax-Phillips scattering and conservative linear systems: a Cuntz-algebra multidimensional setting. Mem. Amer. Math. Soc. 178 (2005), no. 837, iv+101 pp.MathSciNetGoogle Scholar
  4. [4]
    D. BeltiţĂ, Smooth Homogeneous Structures in Operator Theory. Monographs and Surveys in Pure and Appl. Math. 137, Chapman and Hall/CRC, Boca Raton FL, 2006.Google Scholar
  5. [5]
    D. BeltiţĂ and J.E. Galé, Holomorphic geometric models for representations of C*-algebras. J. Funct. Anal. 255 (2008), no. 10, 2888–2932.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    D. BeltiţĂ and T.S. Ratiu, Geometric representation theory for unitary groups of operator algebras. Adv. in Math. 208(1) (2007), 299–317.zbMATHCrossRefGoogle Scholar
  7. [7]
    A. Connes, Noncommutative Geometry. Academic Press, 1994.Google Scholar
  8. [8]
    G. Corach, H. Porta and L. Recht, Differential geometry of systems of projections in Banach algebras. Pacific J. Math. 143(2) (1990), 209–228.zbMATHMathSciNetGoogle Scholar
  9. [9]
    G. Corach, H. Porta and L. Recht, Differential geometry of spaces of relatively regular operators. Integral Equations Operator Theory 13(1990), 773–794.CrossRefMathSciNetGoogle Scholar
  10. [10]
    R.G. Douglas, Banach Algebra Techniques in Operator Theory (2nd Ed.). Graduate Texts in Mathematics 179, Springer Verlag, New York-Berlin, 1998.Google Scholar
  11. [11]
    M.J. Dupré and J.F. Glazebrook, The Stiefel bundle of a Banach algebra. Integral Equations Operator Theory 41 No. 3 (2001), 264–287.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    M.J. Dupré and J.F. Glazebrook, Holomorphic framings for projections in a Banach algebra. Georgian Math. J. 9(3) (2002), 481–494.zbMATHMathSciNetGoogle Scholar
  13. [13]
    M.J. Dupré and J.F. Glazebrook, Relative inversion and embeddings. Georgian Math. J. 11(3) (2004), 425–448.zbMATHMathSciNetGoogle Scholar
  14. [14]
    M.J. Dupré, J.F. Glazebrook and E. Previato, A Banach algebra version of the Sato Grassmannian and commutative rings of differential operators. Acta Applicandae Math. 92(3) (2006), 241–267.zbMATHCrossRefGoogle Scholar
  15. [15]
    M.J. Dupré, J.F. Glazebrook and E. Previato, Differential algebras with Banachalgebra coefficients I: From C*-algebras to the K-theory of the spectral curve. Max Planck Institut für Mathematik, Preprint Series 73 (2008).Google Scholar
  16. [16]
    M.J. Dupré, J.F. Glazebrook and E. Previato, Differential algebras with Banachalgebra coefficients II: the operator cross-ratio Tau-function and the Schwartzian derivative, in preparation.Google Scholar
  17. [17]
    M.J. Dupré, J.-Cl. Evard and J.F. Glazebrook, Smooth parametrization of subspaces of a Banach space. Rev. Un. Mat. Argentina 41 No. 2 (1998), 1–13.zbMATHGoogle Scholar
  18. [18]
    I. Gohberg and J. Leiterer, On cocycles, operator functions and families of subspaces. Mat. Issled (Kishinev) 8 (1973) 23–56.MathSciNetGoogle Scholar
  19. [19]
    I. Gohberg and J. Leiterer, Ü ber Algebren stetiger Operatorfunktionen. Studia Mathematica LVII (1976), 1–26.MathSciNetGoogle Scholar
  20. [20]
    R. Hamilton, The inverse function theorem of Nash and Moser. Bull. Amer. Math. Soc. 7 (1982), 65–222.zbMATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    G.F. Helminck and A.G. Helminck, Hilbert flag varieties and their Kähler structure. J. Phys. A: Math. Gen. 35 (2002), 8531–8550.zbMATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    J.W. Helton, Operator Theory, Analytic Functions, Matrices and Electrical Engineering. CBMS Reg. Conf. Ser. 68, Amer. Math. Soc., Providence RI, 1987.Google Scholar
  23. [23]
    E.C. Lance, Hilbert C*-Modules. London Math. Soc. Lect. Notes 210, Cambridge Univ. Press, 1995.Google Scholar
  24. [24]
    V.M. Manuilov and E.V. Troitsky, Hilbert C*-modules. Trans. Math. Monographs 226, Amer. Math. Soc., 2005.Google Scholar
  25. [25]
    M. Martin and N. Salinas, Flag manifolds and the Cowen-Douglas theory. Journal of Operator Theory 39 (1997), 329–365.MathSciNetGoogle Scholar
  26. [26]
    M. Martin and N. Salinas, Differential geometry of generalized Grassmann manifolds in C*-algebras. In, Operator Theory: Advances and Applications 80 (pp. 206–243) Birkhäuser Verlag, Basel, 1995.Google Scholar
  27. [27]
    M. Martin and N. Salinas, The canonical complex structure of flag manifolds in a C*-algebra. In, Operator Theory: Advances and Applications 104 (pp. 173–187) Birkhäuser Verlag, Basel, 1998.Google Scholar
  28. [28]
    L.J. Mason, M.A. Singer and N.M.J. Woodhouse, Tau functions and the twistor theory of integrable systems. J. Geom. and Phys. 32 (2000), 397–430.zbMATHCrossRefMathSciNetGoogle Scholar
  29. [29]
    J. Mickelsson, Current Algebras and Groups. Plenum Press, New York-London, 1989.zbMATHGoogle Scholar
  30. [30]
    H. Porta and L. Recht, Spaces of projections in a Banach algebra. Acta Cient. Venez. 38 (1987), 408–426.zbMATHMathSciNetGoogle Scholar
  31. [31]
    H. Porta and L. Recht, Conditional expectations and operator decompositions. Ann. Global Anal. Geom 12(4) (1994), 335–339.zbMATHCrossRefMathSciNetGoogle Scholar
  32. [32]
    A. Pressley and G. Segal, Loop Groups and their Representations. Oxford Univ. Press, 1986.Google Scholar
  33. [33]
    M. Sato, The KP hierarchy and infinite dimensional Grassmann manifolds. Proc. Sympos. Pure Math. 49 Part 1. (pp. 51–66) Amer. Math. Soc., Providence, RI, 1989.Google Scholar
  34. [34]
    G. Segal and G. Wilson, Loop groups and equations of KdV type. Publ. Math. IHES 61 (1985), 5–65.zbMATHMathSciNetGoogle Scholar
  35. [35]
    J.F. Smith, The p-classes of a Hilbert module. Proc. Amer. Math. Soc. 36(2) (1972), 428–434.MathSciNetGoogle Scholar
  36. [36]
    H. Upmeier, Symmetric Banach Manifolds and Jordan C*-Algebras, Math. Studies 104, North Holland, Amsterdam-New York-Oxford, 1985.Google Scholar
  37. [37]
    D.R. Wilkins, The Grassmann manifold of a C*-algebra. Proc. Royal Irish Acad. 90 A No. 1 (1990), 99–116.zbMATHMathSciNetGoogle Scholar
  38. [38]
    M.G. Zaidenberg, S.G. Krein, P.A. Kushment and A.A. Pankov, Banach bundles and linear operators. Russian Math. Surveys 30(5) (1975), 115–175.zbMATHCrossRefGoogle Scholar
  39. [39]
    M.I. Zelikin, Geometry of operator cross ratio. Math. Sbornik 197(1) (2006), 39–54.MathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2010

Authors and Affiliations

  • Maurice J. Dupré
    • 1
  • James F. Glazebrook
    • 2
    • 3
  • Emma Previato
    • 4
  1. 1.Department of MathematicsTulane UniversityNew OrleansUSA
  2. 2.(Primary Inst.) Department of Mathematics and Computer ScienceEastern Illinois UniversityCharlestonUSA
  3. 3.(Adjunct Faculty) Department of MathematicsUniversity of Illinois at UrbanaUrbanaUSA
  4. 4.Department of Mathematics and StatisticsBoston UniversityBostonUSA

Personalised recommendations