Skip to main content

Part of the book series: Advances in Mathematical Fluid Mechanics ((AMFM))

Abstract

In the article the II-type superconducting mean-field model is investigated. We consider the physical boundary conditions for this model. Namely the magnetic field is given on the entire boundary of the domain and on the inflow part of the boundary an extra condition is required for the vorticity. This part of the boundary is unknown before resolving the problem. In fact we investigate the “free boundary problem”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antontsev S.N. and Chemetov N.V., Flux of superconducting vortices through a domain, SIAM J. Math. Anal., 39 (2007), pp. 263–280.

    Article  MATH  MathSciNet  Google Scholar 

  2. Antontsev S.N. and Gagneux G., Petits paramètres et passages à la limite dans les problèmes de filtration diphasique, Progress in partial differential equations. Pont-à-Mousson 1997, Pitman Res. Notes in Mathematics Series, Longman, Harlow, 1 (1998).

    Google Scholar 

  3. Antontsev S.N. and Kazhikhov A.V., Mathematical Questions of the Dynamics of Nonhomogeneous Fluids, Novosibirsk State University, Novosibirsk, 1973. Lecture Notes, Novosibirsk State University.

    Google Scholar 

  4. Antontsev S.N., Kazhikhov A.V., and Monakhov V.N., Solvability of boundary value problems for some models of inhomogeneous fluids, Partial Differential Equations, Moscow State University, (1978), pp. 30–33. Proceedings of the International Conference dedicated to the memory of I.G. Petrovskii, Moscow, 1976.

    Google Scholar 

  5. -, Boundary value problems in mechanics of nonhomogeneous fluids, North-Holland Publishing Co., Amsterdam, 1990. Translated from the original Russian edition: Nauka, Novosibirsk, (1983).

    MATH  Google Scholar 

  6. Briggs A., Claisse J., Elliott C.M., and Styles V.M., Computation of Vorticity Evolution for a Cylindrical II-type superconductor subject tomparalel and transverse applied magnetic fields. In the book: Numerical Methods for Viscosity Solutions and Applications (editors: M. Falcone, C. Makridakis), 2001, pp. 234.

    Google Scholar 

  7. Burenkov V.I., Sobolev spaces on domains. B.G. Teubner, Stuttgart-Leipzig, (1998) 312 ISBN 3-8154-2068-7 (see also on Web-site of Burenkov V.I.).

    MATH  Google Scholar 

  8. Elliott C.M. and Styles V.M., Numerical Approximation of vortex density evolution in a superconductor, in the book: Numerical Analysis 1999, edited by D.F. Griffiths, G.A. Watson, CRC Press, (2000).

    Google Scholar 

  9. Chapman S.J., A hierarchy of models for type-II superconductors, SIAM Rev., 42 (2000), pp. 555–598 (electronic).

    Article  MATH  MathSciNet  Google Scholar 

  10. Chapman S.J., A mean-field model of superconducting vortices in three dimensions, SIAM J. Appl. Math., 55 (1995), pp. 1259–1274.

    Article  MATH  MathSciNet  Google Scholar 

  11. Chapman S.J., Macroscopic models of superconductivity, in ICIAM 99 (Edinburgh), Oxford Univ. Press, Oxford, 2000, pp. 23–34.

    Google Scholar 

  12. Chemetov N.V. and Antontsev S.N., Euler equations with non-homogeneous Navier slip boundary condition, Physica D: Nonlinear Phenomena, 237,1, 92–105, 2008.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Chen G.-Q. and Frid H., On the theory of divergence-measure fields and its applications. Bol. Soc. Bras. Mat., 32,3, 1–33, 2001.

    Article  MathSciNet  Google Scholar 

  14. DiPerna R.J. and Lions P.L., Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Gilbarg D. and Trudinger N.S., Elliptic partial differential equations of second order. Springer-Verlag, Berlin, 1983.

    Google Scholar 

  16. Kazhikhov A.V., Initial-boundary value problems for the Euler equations of an ideal incompressible fluid, Vestnik Moskov. Univ. Ser. I Mat. Mekh., (1991), pp. 13–19, 96.

    Google Scholar 

  17. Kazhikhov A.V., An approach to boundary value problems for equations of composite type, Sibirsk. Mat. Zh., 33 (1992), pp. 47–53, 229.

    MATH  MathSciNet  Google Scholar 

  18. Ladyzhenskaya O.A., Solonnikov V.A., and Ural’tseva N.N., Linear and Quasilinear Equations of Parabolic type. American Mathematical Society, Providence RJ (1968).

    Google Scholar 

  19. Ladyzhenskaya O.A. and Uraltaeva N.N., Linear and Quasilinear Elliptic Equations. Academic Press, New York and London (1968).

    Google Scholar 

  20. Lions J.L. and Magenes E., Problèmes aux limites non Homogènes et Applications. Dunod, Paris (1968).

    MATH  Google Scholar 

  21. Kufner A., Jonh O. and Fučik S., Function Spaces. Noordholf Intern. Publishing, Leyden (1977).

    Google Scholar 

  22. Simon J., Compact sets in the space L p (0, T; B), Ann. Mat. Pura Appl., IV. Ser., 146, 1987, 65–96.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

In Memory of A. V. Kazhikhov

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Antontsev, S.N., Chemetov, N.V. (2009). Superconducting Vortices: Chapman Full Model. In: Fursikov, A.V., Galdi, G.P., Pukhnachev, V.V. (eds) New Directions in Mathematical Fluid Mechanics. Advances in Mathematical Fluid Mechanics. Birkhäuser Basel. https://doi.org/10.1007/978-3-0346-0152-8_3

Download citation

Publish with us

Policies and ethics