Skip to main content

Homogenization of the Poisson—Boltzmann Equation

  • Chapter
Book cover New Directions in Mathematical Fluid Mechanics

Part of the book series: Advances in Mathematical Fluid Mechanics ((AMFM))

  • 1127 Accesses

Abstract

By the homogenization approach we justify a two-scale model of ion equilibrium between solid layers. By up-scaling, the electric potential equation in nanoslits separated by thin solid layers is approximated by a homogenized macroscale equation in the form of the Poisson equation for an induced vertical electrical field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allaire G. Homogenization and two-scale convergence. SIAM J. Math. Anal, 23, (1992), 1482–1518.

    Article  MATH  MathSciNet  Google Scholar 

  2. Bensoussan A., Lions J.-L., Papanicolaou G. Asymptotic analysis for periodic structures, North Holland, Amsterdam (1978).

    MATH  Google Scholar 

  3. Chatterjee A.N., Cannon D.M., Gatimu E.N., Sweedler J.V., Aluru N.R., Bohn P.W. Modelling and simulation of ionic currents in three-dimensional microfluidic devices with nanofluidic interconnects. Journal of Nanoparticle Research, 7, (2005), 507–516.

    Article  Google Scholar 

  4. Hunter R.J. Foundations of Colloidal Science. vol. 2, Clarendon Press, Oxford, 1989.

    Google Scholar 

  5. Kirby B.J., Hasselbrink E.F. Jr. Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effect on separations. Electrophoresis, 25, (2004), 187–202.

    Article  Google Scholar 

  6. Ladyženskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N. (1968), Linear and Quasilinear Equations of Parabolic Type. A.M.S. Providence.

    Google Scholar 

  7. Nguetseng G. A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal, 20, (1989), 608–623.

    Article  MATH  MathSciNet  Google Scholar 

  8. Probstein R.F. Physiochemical Hydrodynamics, New York: Wiley, (1994).

    Book  Google Scholar 

  9. Reiter G., Demirel A.L., Granick S. Science, 263, (1994), 1741–1744.

    Google Scholar 

  10. Sanchez-Palencia, E. Non-Homogeneous Media and Vibration Theory, Lecture notes in Phys. Springer, New York, (1980).

    Google Scholar 

  11. Schukin A.D., Pertsev A.V., Amelina E.A. Colloid Chemistry, Moscow, (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Amirat, Y., Shelukhin, V. (2009). Homogenization of the Poisson—Boltzmann Equation. In: Fursikov, A.V., Galdi, G.P., Pukhnachev, V.V. (eds) New Directions in Mathematical Fluid Mechanics. Advances in Mathematical Fluid Mechanics. Birkhäuser Basel. https://doi.org/10.1007/978-3-0346-0152-8_2

Download citation

Publish with us

Policies and ethics