Skip to main content

On Lighthill’s Acoustic Analogy for Low Mach Number Flows

  • Chapter
New Directions in Mathematical Fluid Mechanics

Part of the book series: Advances in Mathematical Fluid Mechanics ((AMFM))

Abstract

Most predictions of the noise generated by a turbulent flow are done using a model due to Lighthill from the 1950’s (the Lighthill analogy). In a large region of a fluid at rest surrounding a small region containing a small Mach number, high Reynolds number turbulent flow, this is Step I: Solve the incompressible Navier-Stokes equations with the constant density ϱ∞ for the velocity u. Step 2: Compute div(div(ρ uu)) and solve the inhomogeneous acoustic equation in both regions for the acoustic density fluctuations R:

$$ \partial _t^2 R - \omega \Delta R = div(div(\rho _\infty u \otimes u)), $$

where \( \sqrt \omega \) is the speed of sound. Current understanding of the derivation of the Lighthill analogy seems to be a variation on Lighthill’s original reasoning and has resisted elaboration by the tools of both formal asymptotics and rigorous mathematics. In this report we give a rigorous derivation of Lighthill’s acoustic analogy (including the sound source div(div(ρ uu)) being derived from an incompressible flow simulation. from the compressible Navier-Stokes and energy equation as Ma → 0.

W.L. was partially supported by NSF grants DMS 0508260 and 0810385

Work was completed during the stay of A.N. at the Department of Mathematics and the Department of Mechanical Engineering of the University of Pittsburgh under the financial support of the exchange visitor programm number P-1-00048. The authors thank to G.P. Galdi for inspiring discussions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Alazard. Low Mach number limit of the full Navier-Stokes equations. Arch. Rational Mech. Anal., 180:1–73, 2006.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. S.E. Bechtel, F.J. Rooney, and M.G. Forest. Connection between stability, convexity of internal energy, and the second law for compressible Newtonian fluids. J. Appl. Mech., 72:299–300, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  3. B.J. Boersma. Numerical simulation of the noise generated by a low Mach number, low Reynolds number jet. Fluid Dynamics Research, 35:425–447, 2004.

    Article  MATH  ADS  Google Scholar 

  4. C. Bogey, C. Bailly, and X. Gloerfelt. Illustration of the inclusion of soundflow interactions in Lighthill’s equation. AIAA Journal, 41:1604–1066, 2003.

    Article  ADS  Google Scholar 

  5. M.E. Bogovskii. Solution of some vector analysis problems connected with operators div and grad (in Russian). Trudy Sem. S.L. Sobolev, 80(1):5–40, 1980.

    MathSciNet  Google Scholar 

  6. D. Bresch, B. Desjardins, E. Grenier, and C.-K. Lin. Low Mach number limit of viscous polytropic flows: Formal asymptotic in the periodic case. Studies in Appl. Math., 109:125–149, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  7. H. Brezis. Analyse fonctionnelle. Masson, Paris, 1987.

    Google Scholar 

  8. T. Colonius, S.K. Lele, and P. Moin. Sound generation in mixing layer. J. Fluid Mech., 330:375–409, 1997.

    Article  MATH  ADS  Google Scholar 

  9. Beirao da Veiga. An L p theory for the n-dimensional, stationary, compressible Navier-Stokes equations, and incompressible limit for compressible fluids. Comm. Math. Phys., 109:229–248, 1987.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. R. Danchin. Global existence in critical spaces for compressible Navier-Stokes equations. Inv. Mathematicae, 141:579–614, 2000.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. R. Danchin. Zero Mach number limit for compressible flows with periodic boundary conditions. Amer. J. Math., 124:1153–1219, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  12. B. Desjardins, E. Grenier, P.-L. Lions, and N. Masmoudi. Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions. J. Math. Pures Appl., 78:461–471, 1999.

    Article  MathSciNet  Google Scholar 

  13. R.J. DiPerna and P.-L. Lions. Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math., 98:511–547, 1989.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. E. Feireisl. Dynamics of viscous compressible fluids. Oxford University Press, Oxford, 2003.

    Book  Google Scholar 

  15. E. Feireisl, J. Málek, A. Novotný, and I. Straškraba. Anelastic approximation as a singular limit of the compressible Navier-Stokes system. Commun. Partial Differential Equations, 33:1–20, 2008.

    Article  Google Scholar 

  16. E. Feireisl and Novotny. The Oberbeck-Boussinesq approximation as a singular limit of the full Navier-Stokes-Fourier system. J. Math. Fluid Mech., 11:274–302, 2009.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. E. Feireisl and A. Novotný. On the low Mach number limit for the full Navier-StokesFourier system. Arch. Rational Mech. Anal., 186:77–107, 2007.

    Article  MATH  ADS  Google Scholar 

  18. E. Feireisl and A. Novotny. Singular limits in thermodynamics of viscous fluids. Birkhäuser, Basel, 2009.

    Book  MATH  Google Scholar 

  19. E. Feireisl, A. Novotný, and H. Petzeltová. On the existence of globally defined weak solutions to the Navier-Stokes equations of compressible isentropic fluids. J. Math. Fluid Dynamics, 3:358–392, 2001.

    MATH  Google Scholar 

  20. G.P. Galdi. An introduction to the mathematical theory of the Navier-Stokes equations, I. Springer-Verlag, New York, 1994.

    Google Scholar 

  21. G.P. Galdi. An introduction to the Navier-Stokes initial boundary value problem. Advances in Mathematical Fluid Mechanics, pages 1–70, 2000.

    Google Scholar 

  22. T. Hagstrom and J. Lorenz. On the stability of approximate solutions of hyperbolicparabolic systems and all-time existence of smooth, slightly compressible flows. Indiana Univ. Math. J., 51:1339–1387, 2002.

    Article  MathSciNet  Google Scholar 

  23. Freud J.B., Lele S.K., and Wang M. Computational prediction of flow-generated sound. Annu. Rev. Fluid Mech., 38:483–512, 2006.

    Article  ADS  Google Scholar 

  24. S. Klainerman and A. Majda. Singular limits for quasilinear hyperbolic systems with large parameters and the incompressible limits of compressible fluids. Comm. Pure Appl. Math., 34:481–524, 1981.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. R. Klein. Asymptotic analysis for atmospheric flows and the construction of asymptotically adaptive numerical methods. Z. Angw. Math. Mech., 80:765–777, 2000.

    Article  MATH  Google Scholar 

  26. R. Klein, N. Botta, T. Schneider, C.D. Munz, S. Roller, A. Meister, L. Hoffmann, and T. Sonar. Asymptotic adaptive methods for multi-scale problems in fluid mechanics. J. Engrg. Math., 39:261–343, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  27. O.A. Ladyzhenskaya. The mathematical theory of viscous incompressible flow. Gordon and Breach, New York, 1969.

    MATH  Google Scholar 

  28. J. Leray. Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math., 63:193–248, 1934.

    Article  MATH  MathSciNet  Google Scholar 

  29. P.-L. Lions. Mathematical topics in fluid dynamics, Vol. 2, Compressible models. Oxford Science Publication, Oxford, 1998.

    Google Scholar 

  30. P.-L. Lions and N. Masmoudi. Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl., 77:585–627, 1998.

    MATH  MathSciNet  Google Scholar 

  31. P.-L. Lions and N. Masmoudi. Une approche locale de la limite incompressible. C.R. Acad. Sci. Paris Sér. I Math., 329(5):387–392, 1999.

    MATH  MathSciNet  ADS  Google Scholar 

  32. N. Masmoudi. Asymptotic problems and compressible and incompressible limits. In Advances in Mathematical Fluid Mechanics, J. Málek, J. Nečas, M. Rokyta Eds., Springer-Verlag, Berlin, pages 119–158, 2000.

    Google Scholar 

  33. N. Masmoudi. Examples of singular limits in hydrodynamics. In Handbook of Differential Equations, III, C. Dafermos, E. Feireisl Eds., Elsevier, Amsterdam, 2006.

    Google Scholar 

  34. G. Métivier and S. Schochet. The incompressible limit of the non-isentropic Euler equations. Arch. Rational Mech. Anal., 158:61–90, 2001.

    Article  MATH  ADS  Google Scholar 

  35. B.E. Mitchell, S.K. Lele, and P. Moin. Direct computation of the sound generated by vortex pairing in an axisymmetric jet. J. Fluid Mech., 383:113–142, 1999.

    Article  MATH  ADS  Google Scholar 

  36. Lighthill M.J. On sound generated aerodynamically i. general theory. Proc. of the Royal Society of London, A 211:564–587, 1952.

    Article  MathSciNet  ADS  Google Scholar 

  37. Lighthill M.J. On sound generated aerodynamically ii. general theory. Proc. of the Royal Society of London, A 222:1–32, 1954.

    MathSciNet  ADS  Google Scholar 

  38. A. Novotny and I. Straškraba. Convergence to equilibria for compressible Navier-Stokes equations with large data. Annali Mat. Pura Appl., 169:263–287, 2001.

    Article  Google Scholar 

  39. A. Novotny and I. Straškraba. Introduction to the mathematical theory of compressible flow. Oxford University Press, Oxford, 2004.

    MATH  Google Scholar 

  40. J. Saal. Maximal regularity for the Stokes system on non cylindrical space-time domains. J. Math. Soc. Japan, 58(3):617–641, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  41. S. Schochet. Fast singular limits of hyperbolic PDE’s. J. Differential Equations, 114:476–512, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  42. S. Schochet. The mathematical theory of low Mach number flows. M2ANMath. Model Numer. anal, 39:441–458, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  43. J. Serrin. The initial value problem for the Navier-Stokes equations. University of Wisconsin Press, 9:69, 1963.

    MathSciNet  Google Scholar 

  44. Y. Shibata and Shimizu S. On the l pl q maximal regularity the Neumann problem for the Stokes equations in a bounded domain. J. Reine Angew. Math., 615:157–209, 2008.

    MATH  MathSciNet  Google Scholar 

  45. V.A. Solonnikov. Estimates for solutions of nonstationary Navier-Stokes equations. J. Sov. Math., 8:467–529, 1977.

    Article  MATH  Google Scholar 

  46. C. Wagner, T. Huttl, and P. Sagaut. Large-eddy simulation for acoustics. Cambridge University Press, Cambridge, 2007.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to A.V. Kazhikov

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Layton, W., Novotný, A. (2009). On Lighthill’s Acoustic Analogy for Low Mach Number Flows. In: Fursikov, A.V., Galdi, G.P., Pukhnachev, V.V. (eds) New Directions in Mathematical Fluid Mechanics. Advances in Mathematical Fluid Mechanics. Birkhäuser Basel. https://doi.org/10.1007/978-3-0346-0152-8_14

Download citation

Publish with us

Policies and ethics