Influence of Outcrop Scale Fractures on the Effective Stiffness of Fault Damage Zone Rocks

  • W. Ashley Griffith
  • Pablo F. Sanz
  • David D. Pollard
Part of the Pageoph Topical Volumes book series (PTV)


We combine detailed mapping and microstructural analyses of small fault zones in granodiorite with numerical mechanical models to estimate the effect of mesoscopic (outcrop-scale) damage zone fractures on the effective stiffness of the fault zone rocks. The Bear Creek fault zones were active at depths between 4 and 15 km and localize mesoscopic off-fault damage into tabular zones between two subparallel boundary faults, producing a fracture-induced material contrast across the boundary faults with softer rocks between the boundary faults and intact granodiorite outside the boundary faults. Using digitized fault zone fracture maps as the modeled fault geometries, we conduct nonlinear uniaxial compression tests using a novel finite-element method code as the experimental “laboratory” apparatus. Map measurements show that the fault zones have high nondimensional facture densities (<1), and damage zone fractures anastamose and intersect, making existing analytical effective medium models inadequate for estimation of the effective elastic properties. Numerical experiments show that the damage zone is strongly anisotropic and the bulk response of the fault zone is strain-weakening. Normal strains as small as 2% can induce a reduction of the overall stiffness of up to 75%. Fracture-induced effective stiffness changes are large enough to locally be greater than intact modulus changes across the fault due to juxtaposition of rocks of different lithologies; therefore mesoscopic fracturing is as important as rock type when considering material or bimaterial effects on earthquake mechanics. These results have important implications for earthquake rupture mechanics models, because mesoscopic damage zone fractures can cause a material contrast across the faults as large as any lithology-based material contrast at seismogenic depths, and the effective moduli can be highly variable during a single rupture event.

Key words

Damage zone effective medium Young’s modulus finite-element method bimaterial 


  1. Ague, J.J. and Brimhall, G.H. (1988), Magmatic are asymmetry and distribution of anomalous plutonic belts in the batholiths of California: Effects of assimilation, crustal thickness, and depth of crystallization. Geol. Soc. Am. Bull. 100, 912–927.CrossRefGoogle Scholar
  2. Amadei, B. and Savage, W.Z.. Effects of joints on rock mass strength and deformability. In Comprehensive Rock Engineering, Vol. I (ed. J. A. Hudson), pp. 331–365 (Pergamon Press 1993).Google Scholar
  3. Ampuero, J.-P. and Ben-Zion, Y. (2008) Cracks, pulses and macroscopic asymmetry of dynamic rupture on a bimaterial interface with velocity-weakening friction, Geophys. J. Int. 173, 674–692, doi: 10.1111/j.1365-246X.2008.03736.x.CrossRefGoogle Scholar
  4. Andrews, D. J. and Ben-Zion, Y. (1997), Wrinkle-like slip pulse on a fault between different materials, J. Geophys. Res. 102(B1), 553–571.CrossRefGoogle Scholar
  5. Andrews, D. J. (2005), Rupture dynamics with energy loss outside the slip zone, J. Geophys. Res. 110, doi:10.1029/2004JB003191.Google Scholar
  6. Andrews, D. J. and Harris, R. A. (2005), The wrinkle-like slip pulse is not important in earthquake dynamics, Geophys. Res. Lett. 32, doi:10.1029/2005GL023996.Google Scholar
  7. Belytschko, T., Plesha, M. E., and Dowding, C. H. (1984) A computer method for stability analysis of caverns in jointed rock, Int. J. Numer. Anal. Methods Geomech. 8, 473–492.CrossRefGoogle Scholar
  8. Ben-Zion, Y. (2006a), Comment on “The wrinkle-like slip pulse is not important in earthquake dynamics” by D. J. Andrews and R. A. Harris, Geophys. Res. Lett. 33, L06310, doi:10.1029/2005GL025372.Google Scholar
  9. Ben-Zion, Y., (2006b), A comment on “Material contrast does not predict earthquake rupture propagation direction” by R. A. Harris and S. M. Day, Geophys. Res. Lett. 33, L13310, doi:10.1029/2005GL025652.Google Scholar
  10. Ben-Zion, Y. (2008), Collective behavior of earthquakes and faults: Continuum-discrete transitions, progressive evolutionary changes and different dynamic regimes, Rev. Geophys. 46, doi:10.1029/2008rg000260.Google Scholar
  11. Ben-Zion, Y., Peng, Z., Okaya, D., Seeber, L., Armbruster, J. G., Ozer, N., Michael, A. J, Baris, S. and Aktar, M. (2003), A shallow fault zone structure illuminated by trapped waves in the Karadere-Duzce branch of the North Anatolian Fault, western Turkey, Geophys. J. Int. 152, 699–717.CrossRefGoogle Scholar
  12. Ben-Zion, Y. and Sammis, C. G. (2003), Characterization of fault zones, Pure Appl. Geophys. 160, 677–715.CrossRefGoogle Scholar
  13. Ben-Zion, Y. and Shi, Z. (2005), Dynamic rupture on a material interface with spontaneous generation of plastic strain in the bulk, Earth Planet. Sci. Lett. 236, 486–496, doi: 10.1016/j.epsl.2005.03.025.CrossRefGoogle Scholar
  14. Bergbauer, S. and Martel, S. J. (1999), Formation of joints in cooling plutons., J. Struct. Geol. 21(7), 821–835.CrossRefGoogle Scholar
  15. Biegel, R. L., Sammis, C. G., and Rosakis, A. J. (2008), An experimental study of the effect of off-fault damage on the velocity of a slip pulse, J. Geophys. Res. 113, doi:10.1029/2007JB005234.Google Scholar
  16. Bieniawski, Z. T. (1978), Determining rock mass deformability: Experience from case histories, Int. J. Rock Mech. and Min. Sci. and Geomech. Abs. 15, 237–248.CrossRefGoogle Scholar
  17. Birch, F. (1966), Compressibility: Elastic constants. In Handbook of Physical Constants, Vol. 97 (ed. S. P. Clark), pp. 97–173, Geological Society of America, Memoir.Google Scholar
  18. Borja, R. I., Sama, K. M., and Sanz, P. F. (2003), On the numerical integration of three-invariant elastoplastic constitutive models, Comp. Meth. Appl. Mech. Eng. 192, 1227–1258.CrossRefGoogle Scholar
  19. Chester, F. M., Evans, J. P., and Biegel, R. L. (1993), Internal structure and weakening mechanisms of the San Andreas fault, J. Geophys. Res. 98(B1), 771–786.CrossRefGoogle Scholar
  20. Chester, F. M. and Chester, J. S. (1998), Ultracataclasite structure and friction processes of the San Andreas fault, Tectonophysics 295, 195–221.CrossRefGoogle Scholar
  21. Chester, F. M., Chester, J. S., Kirschner, D. L., Schultz, S. E., and Evans, J. P. Structure of large-displacement, strike-slip fault zones in the brittle continental crust. In Rheology and Deformation in the Lithosphere at Continental Margins (ed. G. D. Karner, B. Taylor, N. W. Driscoll, and D. L. Kohlstedt) (Columbia University Press 2004).Google Scholar
  22. Crook, A. J. L., Owen, D. R. L., Wilson, S. M., and Yu, J. G. (2006), Benchmarks for the evolution of shear localisation with large relative sliding in frictional materials, Comp. Meth. Appl. Mech. Eng. 195, 4991–5010.CrossRefGoogle Scholar
  23. Crook, A. J. L., Wilson, S. M., Yu, J. G., and Owen, D. R. L. (2006), Predictive modeling of structure evolution in sandbox experiments, J. Struct. Geol. 17, 409–421.Google Scholar
  24. Davatzes, N. C. and Aydin, A. (2003), Overprinting faulting mechanisms in high porosity sandstones of SE Utah, J. Struct. Geol. 25, 1795–1813.CrossRefGoogle Scholar
  25. Dor, O., Rockwell, T. K., and Ben-Zion, Y. (2006), Geological observations of damage asymmetry in the structure of the San Jacinto, San Andreas and Punchbowl faults in southern California: A possible indicator for preferred rupture propagation direction. Pure Appl. Geophys. 163, 301–349.CrossRefGoogle Scholar
  26. Faulkner, D. R., Mitchell, T. M., Healy, D., and Heap, M. J. (2006), Slip on “weak” faults by the rotation of regional stress in the fracture damage zone, Nature 444, doi:10.1038/nature05353.Google Scholar
  27. Fialko, Y. (2004), Probing the mechanical properties of seismically active crust with space geodesy: Study of the co-seismic deformation due to the 1992 M w 7.3 Landers (southern California) earthquake. J. Geophys Res. 109, doi:10.1029/2003JB002756.Google Scholar
  28. Finzi, Y., Hearn, E. H., Ben-Zion, Y., and Lyakhovsky, V. (2009), Structural properties and deformation patterns of evolving strike-slip faults: Numerical simulations incorporating damage rheology, Pure Appl. Geophys. 166.Google Scholar
  29. Gercek, H. (2007), Poisson’s ratio values for rock, Int. J. Rock Mech. Min. Sci. 44, 1–13.CrossRefGoogle Scholar
  30. Goodman, R. E., Heuze, F. E., and Ohnishi, Y. (1972), Research on strength-deformability water pressure relationship for faults in direct shear. Final Report, ARPA Contract H0210020, Univ of Cal., Berkeley.Google Scholar
  31. Griffith, W. A., Di Toro, G., Pennaccihioni, G., and Pollard, D. D. (2008), Thin pseudotachylytes in faults of the Mt. Abbot quadrangle, Sierra Nevada: Physical Constraints for Small Seismic Slip Events, J. Struct. Geol. 30, 1086–1094.CrossRefGoogle Scholar
  32. Griffith, W. A., Di Toro, G., Pennacchioni, G., Pollard, D. D., and Nielsen, S. (2009), Static stress drop associated with brittle slip events on exhumed faults, J. Geophys. Res. 114, B02402, doi:10.1029/2008JB005879.CrossRefGoogle Scholar
  33. Hamiel, Y., Katz, O., Lyakhovsky, V., Reches, Z., and Fialko, Y. (2006), Stable and unstable damage evolution in rocks with implications to fracturing of granite, Geophys. J. Int., doi: 10.1111/j.1365-246X.2006.03126.Google Scholar
  34. Hamiel, Y., Lyakovsky, V., Stanchits, S., Dresen, G., and Ben-Zion, Y. (2008), Brittle deformation and damage-induced seismic wave anisotropy in rocks, Geophys. J. Int., in review, 2008.Google Scholar
  35. Harris, R. A. and Day, S. M. (2005), Material contrast does not predict earthquake rupture propagation direction, Geophys. Res. Lett. 32, doi:10.1029/2005GL023941.Google Scholar
  36. Hoek, E. and Diederichs, M. S. (2006), Empirical estimation of rock mass modulus, Int. J. Rock Mech. Min. Sci. 43, 203–215.CrossRefGoogle Scholar
  37. Hudson, J. A. (1980), Overall properties of a cracked solid. Cambridge Phil. Soc., Math. Proc. 88, 371–384.CrossRefGoogle Scholar
  38. Hudson, J. A., Liu, R., and Crampin, S. (1996), The mechanical properties of materials with interconnected cracks and pores, Geophys. J. Int. 124, 105–112.CrossRefGoogle Scholar
  39. Jaeger, J. C., Cook, N. G. W., and Zimmermann, R. W. (2007), Fundamentals of Rock Mechanics (Blackwell Publishing, Malden, MA, U.S.A., 2007).Google Scholar
  40. Kachnov, M. (1992), Effective elastic properties of cracked solids: Critical review of some basic concepts, Appl. Mech. Rev. 45, 304–335.CrossRefGoogle Scholar
  41. Lachenbruch, A. H. (1980), Frictional heating, fluid pressure, and the resistance to fault motion, J. Geophys. Res. 85, 6,097–6,112.CrossRefGoogle Scholar
  42. Laursen, T. A. Computational contact and impact mechanics (Springer-Verlag, Berlin and Heidelberg 2002).Google Scholar
  43. Laursen, T. A. and Simo, J. C. (1993), A continuum-based finite element formulation for the implicit solution of multibody large deformation frictional contact problems, Int. J. Num. Meth. Eng. 36, 3451–3485.CrossRefGoogle Scholar
  44. Li, Y.-G., Aki, K., Adams, D., Hasemi, A., and Lee, W. H. K. (1994), Seismic guided waves trapped in the fault zone of the Landers, California, earthquake of 1992, J. Geophys. Res. 99, 11,705–11,722.CrossRefGoogle Scholar
  45. Lockner, D., Tanaka, H., Ito, H., and Ikeda, R. (2000), Permeability and strength of core samples from the Nojima fault of the 1995 Kobe earthquake. In Proc. Internat. Workshop on the Nojima Fault Core and Borehole Analysis. U.S. Geological Survey Open-file Report 00-129.Google Scholar
  46. Lockwood, J. P. and Lydon, P. A. (1975), Geologic map of the Mount Abbot quadrangle, California. Geological Survey Geologic Quadrangle GQ-1155 scale 1:62,500.Google Scholar
  47. Lyakhovsky, V. and Ben-Zion, Y. (2008), Scaling relations of earthquakes, aseismic deformation and evolving fault structures in a damage rheology model, Geophys. J. Int., 172, 651–662, doi: 10.1111/j.1365-246X.2007.03652.x.CrossRefGoogle Scholar
  48. Lyakhovsky, V., Ben-Zion, Y., and Agnon, A. (1997a), Distributed damage, faulting, and friction, J. Geophys. Res. 102, 27635–27649.CrossRefGoogle Scholar
  49. Lyakhovsky, V., Reches, Z., Weinberger, R., and Scott, T. E. (1997b), Non-linear elastic behaviour of damaged rocks, Geophys. J. Int., 157–166.Google Scholar
  50. Mahtab, M. A. (1969), Three-dimensional finite element analysis of joint and rock slopes. Ph.D. Thesis, Univ. of California, Berkeley.Google Scholar
  51. Martel, S. J., Pollard, D. D., and Segall, P. (1988), Development of simple strike-slip fault zones, Mount Abbot Quadrangle, Sierra Nevada, California. Geol. Soc. Am. Bull. 100, 1,451–1,465.CrossRefGoogle Scholar
  52. Martel, S. J. and Pollard, D. D. (1989), Mechanics of slip and fracture along small faults and simple strike-slip fault zones in granitic rock, J. Geophys. Res. 94, 9,417–9,428.CrossRefGoogle Scholar
  53. Martel, S. J. (1990), Formation of compound strike-slip fault zones, Mount Abbot quadrangle, California, J. Struct. Geol. 12, 869–882.CrossRefGoogle Scholar
  54. Martel, S. J. and Boger, W. A. (1998), Geometry and mechanics of secondary fracturing around small three-dimensional faults in granitic rock. J. Geophys. Res. 103, 21,299–21,314.CrossRefGoogle Scholar
  55. Mase, C. W. and Smith, L. (1987), Effects of frictional heating on the thermal, hydrologic, and mechanical response of a fault, J. Geophys. Res. 92, 6249–6272.CrossRefGoogle Scholar
  56. Mavko, G., Mukerji, T., and Dvorkin, J. The Rock Physics Handbook: Tools for Seismic Analysis in Porous Media (Cambridge University Press 1998).Google Scholar
  57. Myers, R. and Aydin, A. A. (2004), The evolution of fault zones formed by shearing across joint zones in sandstone, J. Struct. Geol. 26, 947–956.CrossRefGoogle Scholar
  58. Noda, H. and Shimamoto, T. (2005), Thermal pressurization and slip-weakening distance of a fault: An example of the Hanaore Fault, southwest Japan, Bull. Seismol. Soc. Am. 95(4), 1224–1233.CrossRefGoogle Scholar
  59. O’Connell, R. J. and Budianski, B. (1974), Seismic velocities in dry and wet cracked solids, J. Geophys. Res. 79, 5412–5426.CrossRefGoogle Scholar
  60. Pachell, M. A. and Evans, J. P. (2002), Growth, linkage, and termination processes of a 10-km-long strike-slip fault in jointed granite: The Gemini fault zone, Sierra Nevada, California. J. Struct. Geol. 24, 1903–1924.CrossRefGoogle Scholar
  61. Pollard, D. D. and Segall, P. Theoretical displacements and stresses near fractures in rock: With applications to faults, joints, veins, dikes, and solution surfaces. In Fracture Mechanics of Rock (ed. B. K. Atkinson), pp. 277–349 (Academic Press Inc. 1987).Google Scholar
  62. Renshaw, C. E. (1997), Mechanical controls on the spatial density of opening-mode fracture networks, Geology 25(10), 923–926.CrossRefGoogle Scholar
  63. Rice, J. R. (2006), Heating and weakening of faults during earthquake slip, J. Geophys. Res. 111, doi:10.1029/2005JB004006.Google Scholar
  64. Rosso, R. (1976), A comparison of joint stiffness measurements in direct shear, triaxial compression and in situ, Int. J. Rock Mech. Min. Sci. Geomech Abst. 13, 167–172.CrossRefGoogle Scholar
  65. Sanz, P. F. (2008), Modeling rock folding with large deformation frictional contact mechanics, Ph.D. Thesis, Stanford University, California, USA.Google Scholar
  66. Sanz, P. F., Borja, R. I., and Pollard, D. D. (2007), Mechanical aspects of thrust faulting driven by far-field compression and their implications to fold geometry, Acta Geotech. 2, 17–31.CrossRefGoogle Scholar
  67. Sanz, P. F., Pollard, D. D., Allwardt, P. F., and Borja, R. I. (2008), Mechanical models of fracture reactivation and slip on bedding surfaces during folding of the asymmetric anticline at Sheep Mountain, Wyoming, J. Struct. Geol. 30, 1177–1191, doi:10.1016/j.jsg.2008.06.002.CrossRefGoogle Scholar
  68. Schultz, S. E. and Evans, J. P. (2000), Mesoscopic structure of the Punchbowl Fault, Southern California and the geologic and geophysical structure of active strike-slip faults, J. Struct. Geol. 22, 913–930.CrossRefGoogle Scholar
  69. Segall, P. and Pollard, D. D. (1983a), Nucleation and growth of strike slip faults in granite, J. Geophys. Res. 88, 555–568.CrossRefGoogle Scholar
  70. Segall, P. and Pollard, D. D. (1983b), Joint formation in granitic rock of the Sierra Nevada, Geol. Soc. Am. Bull. 94, 563–575.CrossRefGoogle Scholar
  71. Segall, P., McKee, E. H., Martel, S. J., and Turrin, B. D. (1990), Late Cretaceous age of fractures in the Sierra Nevada batholith, California. Geology 18, 1,248–1,251.CrossRefGoogle Scholar
  72. Sibson, R. H. (1973), Interactions between temperature and pore-fluid pressure during earthquake faulting and a mechanism for partial or total stress relief, Nature 243, 66–68.Google Scholar
  73. Simo, J. C. and Taylor, R. L. (1985), Consistent tangent operators for rate-independent elastoplasticity, Computer Methods in Applied Mechanics and Engineering 48, 101–118.CrossRefGoogle Scholar
  74. Sonmez, H., Gokceoglu, C., Nefeslioglu, H. A., Kayabasi, A. (2006), Estimation of rock modulus: For intact rocks with an artificial neural network and for rock masses with a new empirical equation, Int. J. Rock Mech. Min. Sci. 43, 224–35.CrossRefGoogle Scholar
  75. Stern, T. W., Bateman, P. C., Morgan, B. A., Newall, M. F., and Peck, D. L. (1981), Isotopic U-Pb ages of zircon from the granitoids of the central Sierra Nevada, California, U.S. Geol. Surv. Prof. Paper 1185, 17.Google Scholar
  76. Walsh, J. B. (1965), The effect of cracks on the uniaxial elastic compression of rocks, J. Geophys. Res. 70, 399–411.CrossRefGoogle Scholar
  77. Weinberger, R., Reches, Z., Eidelman, A., and Scott, T. S. (1994), Tensile properties of rocks in four-point beam tests under confining pressure. In Proc. the First North American Rock Mechanics Symp., Austin, Texas, (eds. P. Nelson and S.E. Laubach), pp. 435–442.Google Scholar
  78. Wibberley, C. A. J. (2002), Hydraulic diffusivity of fault gouge zones and implications for thermal pressurization during seismic slip, Earth Planets Space 54, 1153–1171.Google Scholar
  79. Wibberley, C. A. J. and Shimamoto, T. (2003). Internal structure and weakening effects of major strike-slip fault zones: The Median Tectonic Line in Mie Prefecture, Southwest Japan, J. Struct. Geol. 25, 59–78.CrossRefGoogle Scholar
  80. Worthington, M. H. and Lubbe, R. (2007), The scaling of fracture compliance, Geol. Soc. Lond. Spec. Pub. 207, 73–82.CrossRefGoogle Scholar
  81. Wriggers, P. (1995), Finite-element algorithms for contact problems, Arch. Comput. Meth. Eng. 4, 1–49.CrossRefGoogle Scholar
  82. Wriggers, P., Computational Contact Mechanics (Wiley and Sons 2002).Google Scholar
  83. Wu, H. and Pollard, D. D. (1995), An experimental study of the relationship between joint spacing and layer thickness, J. Struct. Geol. 17(6), 887–905.CrossRefGoogle Scholar
  84. Yoshioka, N. and Scholz, C. H. (1989), Elastic properties of contacting surfaces under normal and shear loads 1. Theory, J. Geophys. Res. 94, 17681–17690.CrossRefGoogle Scholar
  85. Yoshioka, N. and Scholz, C. H. (1989), Elastic properties of contacting surfaces under normal and shear loads 2. Comparison of Theory with Experiment, J. Geophys. Res. 94, 17691–17700.CrossRefGoogle Scholar
  86. Zoback, M. D. and Byerlee, J. D. (1975), The effect of microcrack dilatancy on the permeability of Westerly granite, J. Geophys. Res. 80, 752–755.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel 2009

Authors and Affiliations

  • W. Ashley Griffith
    • 2
    • 4
  • Pablo F. Sanz
    • 1
    • 3
  • David D. Pollard
    • 2
  1. 1.ExxonMobil Upstream Research CompanyUSA
  2. 2.Department of Geological and Environmental SciencesStanford UniversityStanfordUSA
  3. 3.Civil and Environmental EngineeringStanford UniversityStanfordUSA
  4. 4.Instituto Nazionale di Geofisica e VulcanologiaRomaItalia

Personalised recommendations