Skip to main content

Influence of Outcrop Scale Fractures on the Effective Stiffness of Fault Damage Zone Rocks

  • Chapter
  • First Online:
Mechanics, Structure and Evolution of Fault Zones

Part of the book series: Pageoph Topical Volumes ((PTV))

  • 1294 Accesses

Abstract

We combine detailed mapping and microstructural analyses of small fault zones in granodiorite with numerical mechanical models to estimate the effect of mesoscopic (outcrop-scale) damage zone fractures on the effective stiffness of the fault zone rocks. The Bear Creek fault zones were active at depths between 4 and 15 km and localize mesoscopic off-fault damage into tabular zones between two subparallel boundary faults, producing a fracture-induced material contrast across the boundary faults with softer rocks between the boundary faults and intact granodiorite outside the boundary faults. Using digitized fault zone fracture maps as the modeled fault geometries, we conduct nonlinear uniaxial compression tests using a novel finite-element method code as the experimental “laboratory” apparatus. Map measurements show that the fault zones have high nondimensional facture densities (<1), and damage zone fractures anastamose and intersect, making existing analytical effective medium models inadequate for estimation of the effective elastic properties. Numerical experiments show that the damage zone is strongly anisotropic and the bulk response of the fault zone is strain-weakening. Normal strains as small as 2% can induce a reduction of the overall stiffness of up to 75%. Fracture-induced effective stiffness changes are large enough to locally be greater than intact modulus changes across the fault due to juxtaposition of rocks of different lithologies; therefore mesoscopic fracturing is as important as rock type when considering material or bimaterial effects on earthquake mechanics. These results have important implications for earthquake rupture mechanics models, because mesoscopic damage zone fractures can cause a material contrast across the faults as large as any lithology-based material contrast at seismogenic depths, and the effective moduli can be highly variable during a single rupture event.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ague, J.J. and Brimhall, G.H. (1988), Magmatic are asymmetry and distribution of anomalous plutonic belts in the batholiths of California: Effects of assimilation, crustal thickness, and depth of crystallization. Geol. Soc. Am. Bull. 100, 912–927.

    Article  Google Scholar 

  • Amadei, B. and Savage, W.Z.. Effects of joints on rock mass strength and deformability. In Comprehensive Rock Engineering, Vol. I (ed. J. A. Hudson), pp. 331–365 (Pergamon Press 1993).

    Google Scholar 

  • Ampuero, J.-P. and Ben-Zion, Y. (2008) Cracks, pulses and macroscopic asymmetry of dynamic rupture on a bimaterial interface with velocity-weakening friction, Geophys. J. Int. 173, 674–692, doi: 10.1111/j.1365-246X.2008.03736.x.

    Article  Google Scholar 

  • Andrews, D. J. and Ben-Zion, Y. (1997), Wrinkle-like slip pulse on a fault between different materials, J. Geophys. Res. 102(B1), 553–571.

    Article  Google Scholar 

  • Andrews, D. J. (2005), Rupture dynamics with energy loss outside the slip zone, J. Geophys. Res. 110, doi:10.1029/2004JB003191.

    Google Scholar 

  • Andrews, D. J. and Harris, R. A. (2005), The wrinkle-like slip pulse is not important in earthquake dynamics, Geophys. Res. Lett. 32, doi:10.1029/2005GL023996.

    Google Scholar 

  • Belytschko, T., Plesha, M. E., and Dowding, C. H. (1984) A computer method for stability analysis of caverns in jointed rock, Int. J. Numer. Anal. Methods Geomech. 8, 473–492.

    Article  Google Scholar 

  • Ben-Zion, Y. (2006a), Comment on “The wrinkle-like slip pulse is not important in earthquake dynamics” by D. J. Andrews and R. A. Harris, Geophys. Res. Lett. 33, L06310, doi:10.1029/2005GL025372.

    Google Scholar 

  • Ben-Zion, Y., (2006b), A comment on “Material contrast does not predict earthquake rupture propagation direction” by R. A. Harris and S. M. Day, Geophys. Res. Lett. 33, L13310, doi:10.1029/2005GL025652.

    Google Scholar 

  • Ben-Zion, Y. (2008), Collective behavior of earthquakes and faults: Continuum-discrete transitions, progressive evolutionary changes and different dynamic regimes, Rev. Geophys. 46, doi:10.1029/2008rg000260.

    Google Scholar 

  • Ben-Zion, Y., Peng, Z., Okaya, D., Seeber, L., Armbruster, J. G., Ozer, N., Michael, A. J, Baris, S. and Aktar, M. (2003), A shallow fault zone structure illuminated by trapped waves in the Karadere-Duzce branch of the North Anatolian Fault, western Turkey, Geophys. J. Int. 152, 699–717.

    Article  Google Scholar 

  • Ben-Zion, Y. and Sammis, C. G. (2003), Characterization of fault zones, Pure Appl. Geophys. 160, 677–715.

    Article  Google Scholar 

  • Ben-Zion, Y. and Shi, Z. (2005), Dynamic rupture on a material interface with spontaneous generation of plastic strain in the bulk, Earth Planet. Sci. Lett. 236, 486–496, doi: 10.1016/j.epsl.2005.03.025.

    Article  Google Scholar 

  • Bergbauer, S. and Martel, S. J. (1999), Formation of joints in cooling plutons., J. Struct. Geol. 21(7), 821–835.

    Article  Google Scholar 

  • Biegel, R. L., Sammis, C. G., and Rosakis, A. J. (2008), An experimental study of the effect of off-fault damage on the velocity of a slip pulse, J. Geophys. Res. 113, doi:10.1029/2007JB005234.

    Google Scholar 

  • Bieniawski, Z. T. (1978), Determining rock mass deformability: Experience from case histories, Int. J. Rock Mech. and Min. Sci. and Geomech. Abs. 15, 237–248.

    Article  Google Scholar 

  • Birch, F. (1966), Compressibility: Elastic constants. In Handbook of Physical Constants, Vol. 97 (ed. S. P. Clark), pp. 97–173, Geological Society of America, Memoir.

    Google Scholar 

  • Borja, R. I., Sama, K. M., and Sanz, P. F. (2003), On the numerical integration of three-invariant elastoplastic constitutive models, Comp. Meth. Appl. Mech. Eng. 192, 1227–1258.

    Article  Google Scholar 

  • Chester, F. M., Evans, J. P., and Biegel, R. L. (1993), Internal structure and weakening mechanisms of the San Andreas fault, J. Geophys. Res. 98(B1), 771–786.

    Article  Google Scholar 

  • Chester, F. M. and Chester, J. S. (1998), Ultracataclasite structure and friction processes of the San Andreas fault, Tectonophysics 295, 195–221.

    Article  Google Scholar 

  • Chester, F. M., Chester, J. S., Kirschner, D. L., Schultz, S. E., and Evans, J. P. Structure of large-displacement, strike-slip fault zones in the brittle continental crust. In Rheology and Deformation in the Lithosphere at Continental Margins (ed. G. D. Karner, B. Taylor, N. W. Driscoll, and D. L. Kohlstedt) (Columbia University Press 2004).

    Google Scholar 

  • Crook, A. J. L., Owen, D. R. L., Wilson, S. M., and Yu, J. G. (2006), Benchmarks for the evolution of shear localisation with large relative sliding in frictional materials, Comp. Meth. Appl. Mech. Eng. 195, 4991–5010.

    Article  Google Scholar 

  • Crook, A. J. L., Wilson, S. M., Yu, J. G., and Owen, D. R. L. (2006), Predictive modeling of structure evolution in sandbox experiments, J. Struct. Geol. 17, 409–421.

    Google Scholar 

  • Davatzes, N. C. and Aydin, A. (2003), Overprinting faulting mechanisms in high porosity sandstones of SE Utah, J. Struct. Geol. 25, 1795–1813.

    Article  Google Scholar 

  • Dor, O., Rockwell, T. K., and Ben-Zion, Y. (2006), Geological observations of damage asymmetry in the structure of the San Jacinto, San Andreas and Punchbowl faults in southern California: A possible indicator for preferred rupture propagation direction. Pure Appl. Geophys. 163, 301–349.

    Article  Google Scholar 

  • Faulkner, D. R., Mitchell, T. M., Healy, D., and Heap, M. J. (2006), Slip on “weak” faults by the rotation of regional stress in the fracture damage zone, Nature 444, doi:10.1038/nature05353.

    Google Scholar 

  • Fialko, Y. (2004), Probing the mechanical properties of seismically active crust with space geodesy: Study of the co-seismic deformation due to the 1992 M w 7.3 Landers (southern California) earthquake. J. Geophys Res. 109, doi:10.1029/2003JB002756.

    Google Scholar 

  • Finzi, Y., Hearn, E. H., Ben-Zion, Y., and Lyakhovsky, V. (2009), Structural properties and deformation patterns of evolving strike-slip faults: Numerical simulations incorporating damage rheology, Pure Appl. Geophys. 166.

    Google Scholar 

  • Gercek, H. (2007), Poisson’s ratio values for rock, Int. J. Rock Mech. Min. Sci. 44, 1–13.

    Article  Google Scholar 

  • Goodman, R. E., Heuze, F. E., and Ohnishi, Y. (1972), Research on strength-deformability water pressure relationship for faults in direct shear. Final Report, ARPA Contract H0210020, Univ of Cal., Berkeley.

    Google Scholar 

  • Griffith, W. A., Di Toro, G., Pennaccihioni, G., and Pollard, D. D. (2008), Thin pseudotachylytes in faults of the Mt. Abbot quadrangle, Sierra Nevada: Physical Constraints for Small Seismic Slip Events, J. Struct. Geol. 30, 1086–1094.

    Article  Google Scholar 

  • Griffith, W. A., Di Toro, G., Pennacchioni, G., Pollard, D. D., and Nielsen, S. (2009), Static stress drop associated with brittle slip events on exhumed faults, J. Geophys. Res. 114, B02402, doi:10.1029/2008JB005879.

    Article  Google Scholar 

  • Hamiel, Y., Katz, O., Lyakhovsky, V., Reches, Z., and Fialko, Y. (2006), Stable and unstable damage evolution in rocks with implications to fracturing of granite, Geophys. J. Int., doi: 10.1111/j.1365-246X.2006.03126.

    Google Scholar 

  • Hamiel, Y., Lyakovsky, V., Stanchits, S., Dresen, G., and Ben-Zion, Y. (2008), Brittle deformation and damage-induced seismic wave anisotropy in rocks, Geophys. J. Int., in review, 2008.

    Google Scholar 

  • Harris, R. A. and Day, S. M. (2005), Material contrast does not predict earthquake rupture propagation direction, Geophys. Res. Lett. 32, doi:10.1029/2005GL023941.

    Google Scholar 

  • Hoek, E. and Diederichs, M. S. (2006), Empirical estimation of rock mass modulus, Int. J. Rock Mech. Min. Sci. 43, 203–215.

    Article  Google Scholar 

  • Hudson, J. A. (1980), Overall properties of a cracked solid. Cambridge Phil. Soc., Math. Proc. 88, 371–384.

    Article  Google Scholar 

  • Hudson, J. A., Liu, R., and Crampin, S. (1996), The mechanical properties of materials with interconnected cracks and pores, Geophys. J. Int. 124, 105–112.

    Article  Google Scholar 

  • Jaeger, J. C., Cook, N. G. W., and Zimmermann, R. W. (2007), Fundamentals of Rock Mechanics (Blackwell Publishing, Malden, MA, U.S.A., 2007).

    Google Scholar 

  • Kachnov, M. (1992), Effective elastic properties of cracked solids: Critical review of some basic concepts, Appl. Mech. Rev. 45, 304–335.

    Article  Google Scholar 

  • Lachenbruch, A. H. (1980), Frictional heating, fluid pressure, and the resistance to fault motion, J. Geophys. Res. 85, 6,097–6,112.

    Article  Google Scholar 

  • Laursen, T. A. Computational contact and impact mechanics (Springer-Verlag, Berlin and Heidelberg 2002).

    Google Scholar 

  • Laursen, T. A. and Simo, J. C. (1993), A continuum-based finite element formulation for the implicit solution of multibody large deformation frictional contact problems, Int. J. Num. Meth. Eng. 36, 3451–3485.

    Article  Google Scholar 

  • Li, Y.-G., Aki, K., Adams, D., Hasemi, A., and Lee, W. H. K. (1994), Seismic guided waves trapped in the fault zone of the Landers, California, earthquake of 1992, J. Geophys. Res. 99, 11,705–11,722.

    Article  Google Scholar 

  • Lockner, D., Tanaka, H., Ito, H., and Ikeda, R. (2000), Permeability and strength of core samples from the Nojima fault of the 1995 Kobe earthquake. In Proc. Internat. Workshop on the Nojima Fault Core and Borehole Analysis. U.S. Geological Survey Open-file Report 00-129.

    Google Scholar 

  • Lockwood, J. P. and Lydon, P. A. (1975), Geologic map of the Mount Abbot quadrangle, California. Geological Survey Geologic Quadrangle GQ-1155 scale 1:62,500.

    Google Scholar 

  • Lyakhovsky, V. and Ben-Zion, Y. (2008), Scaling relations of earthquakes, aseismic deformation and evolving fault structures in a damage rheology model, Geophys. J. Int., 172, 651–662, doi: 10.1111/j.1365-246X.2007.03652.x.

    Article  Google Scholar 

  • Lyakhovsky, V., Ben-Zion, Y., and Agnon, A. (1997a), Distributed damage, faulting, and friction, J. Geophys. Res. 102, 27635–27649.

    Article  Google Scholar 

  • Lyakhovsky, V., Reches, Z., Weinberger, R., and Scott, T. E. (1997b), Non-linear elastic behaviour of damaged rocks, Geophys. J. Int., 157–166.

    Google Scholar 

  • Mahtab, M. A. (1969), Three-dimensional finite element analysis of joint and rock slopes. Ph.D. Thesis, Univ. of California, Berkeley.

    Google Scholar 

  • Martel, S. J., Pollard, D. D., and Segall, P. (1988), Development of simple strike-slip fault zones, Mount Abbot Quadrangle, Sierra Nevada, California. Geol. Soc. Am. Bull. 100, 1,451–1,465.

    Article  Google Scholar 

  • Martel, S. J. and Pollard, D. D. (1989), Mechanics of slip and fracture along small faults and simple strike-slip fault zones in granitic rock, J. Geophys. Res. 94, 9,417–9,428.

    Article  Google Scholar 

  • Martel, S. J. (1990), Formation of compound strike-slip fault zones, Mount Abbot quadrangle, California, J. Struct. Geol. 12, 869–882.

    Article  Google Scholar 

  • Martel, S. J. and Boger, W. A. (1998), Geometry and mechanics of secondary fracturing around small three-dimensional faults in granitic rock. J. Geophys. Res. 103, 21,299–21,314.

    Article  Google Scholar 

  • Mase, C. W. and Smith, L. (1987), Effects of frictional heating on the thermal, hydrologic, and mechanical response of a fault, J. Geophys. Res. 92, 6249–6272.

    Article  Google Scholar 

  • Mavko, G., Mukerji, T., and Dvorkin, J. The Rock Physics Handbook: Tools for Seismic Analysis in Porous Media (Cambridge University Press 1998).

    Google Scholar 

  • Myers, R. and Aydin, A. A. (2004), The evolution of fault zones formed by shearing across joint zones in sandstone, J. Struct. Geol. 26, 947–956.

    Article  Google Scholar 

  • Noda, H. and Shimamoto, T. (2005), Thermal pressurization and slip-weakening distance of a fault: An example of the Hanaore Fault, southwest Japan, Bull. Seismol. Soc. Am. 95(4), 1224–1233.

    Article  Google Scholar 

  • O’Connell, R. J. and Budianski, B. (1974), Seismic velocities in dry and wet cracked solids, J. Geophys. Res. 79, 5412–5426.

    Article  Google Scholar 

  • Pachell, M. A. and Evans, J. P. (2002), Growth, linkage, and termination processes of a 10-km-long strike-slip fault in jointed granite: The Gemini fault zone, Sierra Nevada, California. J. Struct. Geol. 24, 1903–1924.

    Article  Google Scholar 

  • Pollard, D. D. and Segall, P. Theoretical displacements and stresses near fractures in rock: With applications to faults, joints, veins, dikes, and solution surfaces. In Fracture Mechanics of Rock (ed. B. K. Atkinson), pp. 277–349 (Academic Press Inc. 1987).

    Google Scholar 

  • Renshaw, C. E. (1997), Mechanical controls on the spatial density of opening-mode fracture networks, Geology 25(10), 923–926.

    Article  Google Scholar 

  • Rice, J. R. (2006), Heating and weakening of faults during earthquake slip, J. Geophys. Res. 111, doi:10.1029/2005JB004006.

    Google Scholar 

  • Rosso, R. (1976), A comparison of joint stiffness measurements in direct shear, triaxial compression and in situ, Int. J. Rock Mech. Min. Sci. Geomech Abst. 13, 167–172.

    Article  Google Scholar 

  • Sanz, P. F. (2008), Modeling rock folding with large deformation frictional contact mechanics, Ph.D. Thesis, Stanford University, California, USA.

    Google Scholar 

  • Sanz, P. F., Borja, R. I., and Pollard, D. D. (2007), Mechanical aspects of thrust faulting driven by far-field compression and their implications to fold geometry, Acta Geotech. 2, 17–31.

    Article  Google Scholar 

  • Sanz, P. F., Pollard, D. D., Allwardt, P. F., and Borja, R. I. (2008), Mechanical models of fracture reactivation and slip on bedding surfaces during folding of the asymmetric anticline at Sheep Mountain, Wyoming, J. Struct. Geol. 30, 1177–1191, doi:10.1016/j.jsg.2008.06.002.

    Article  Google Scholar 

  • Schultz, S. E. and Evans, J. P. (2000), Mesoscopic structure of the Punchbowl Fault, Southern California and the geologic and geophysical structure of active strike-slip faults, J. Struct. Geol. 22, 913–930.

    Article  Google Scholar 

  • Segall, P. and Pollard, D. D. (1983a), Nucleation and growth of strike slip faults in granite, J. Geophys. Res. 88, 555–568.

    Article  Google Scholar 

  • Segall, P. and Pollard, D. D. (1983b), Joint formation in granitic rock of the Sierra Nevada, Geol. Soc. Am. Bull. 94, 563–575.

    Article  Google Scholar 

  • Segall, P., McKee, E. H., Martel, S. J., and Turrin, B. D. (1990), Late Cretaceous age of fractures in the Sierra Nevada batholith, California. Geology 18, 1,248–1,251.

    Article  Google Scholar 

  • Sibson, R. H. (1973), Interactions between temperature and pore-fluid pressure during earthquake faulting and a mechanism for partial or total stress relief, Nature 243, 66–68.

    Google Scholar 

  • Simo, J. C. and Taylor, R. L. (1985), Consistent tangent operators for rate-independent elastoplasticity, Computer Methods in Applied Mechanics and Engineering 48, 101–118.

    Article  Google Scholar 

  • Sonmez, H., Gokceoglu, C., Nefeslioglu, H. A., Kayabasi, A. (2006), Estimation of rock modulus: For intact rocks with an artificial neural network and for rock masses with a new empirical equation, Int. J. Rock Mech. Min. Sci. 43, 224–35.

    Article  Google Scholar 

  • Stern, T. W., Bateman, P. C., Morgan, B. A., Newall, M. F., and Peck, D. L. (1981), Isotopic U-Pb ages of zircon from the granitoids of the central Sierra Nevada, California, U.S. Geol. Surv. Prof. Paper 1185, 17.

    Google Scholar 

  • Walsh, J. B. (1965), The effect of cracks on the uniaxial elastic compression of rocks, J. Geophys. Res. 70, 399–411.

    Article  Google Scholar 

  • Weinberger, R., Reches, Z., Eidelman, A., and Scott, T. S. (1994), Tensile properties of rocks in four-point beam tests under confining pressure. In Proc. the First North American Rock Mechanics Symp., Austin, Texas, (eds. P. Nelson and S.E. Laubach), pp. 435–442.

    Google Scholar 

  • Wibberley, C. A. J. (2002), Hydraulic diffusivity of fault gouge zones and implications for thermal pressurization during seismic slip, Earth Planets Space 54, 1153–1171.

    Google Scholar 

  • Wibberley, C. A. J. and Shimamoto, T. (2003). Internal structure and weakening effects of major strike-slip fault zones: The Median Tectonic Line in Mie Prefecture, Southwest Japan, J. Struct. Geol. 25, 59–78.

    Article  Google Scholar 

  • Worthington, M. H. and Lubbe, R. (2007), The scaling of fracture compliance, Geol. Soc. Lond. Spec. Pub. 207, 73–82.

    Article  Google Scholar 

  • Wriggers, P. (1995), Finite-element algorithms for contact problems, Arch. Comput. Meth. Eng. 4, 1–49.

    Article  Google Scholar 

  • Wriggers, P., Computational Contact Mechanics (Wiley and Sons 2002).

    Google Scholar 

  • Wu, H. and Pollard, D. D. (1995), An experimental study of the relationship between joint spacing and layer thickness, J. Struct. Geol. 17(6), 887–905.

    Article  Google Scholar 

  • Yoshioka, N. and Scholz, C. H. (1989), Elastic properties of contacting surfaces under normal and shear loads 1. Theory, J. Geophys. Res. 94, 17681–17690.

    Article  Google Scholar 

  • Yoshioka, N. and Scholz, C. H. (1989), Elastic properties of contacting surfaces under normal and shear loads 2. Comparison of Theory with Experiment, J. Geophys. Res. 94, 17691–17700.

    Article  Google Scholar 

  • Zoback, M. D. and Byerlee, J. D. (1975), The effect of microcrack dilatancy on the permeability of Westerly granite, J. Geophys. Res. 80, 752–755.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag, Basel

About this chapter

Cite this chapter

Griffith, W.A., Sanz, P.F., Pollard, D.D. (2009). Influence of Outcrop Scale Fractures on the Effective Stiffness of Fault Damage Zone Rocks. In: Ben-Zion, Y., Sammis, C. (eds) Mechanics, Structure and Evolution of Fault Zones. Pageoph Topical Volumes. Birkhäuser Basel. https://doi.org/10.1007/978-3-0346-0138-2_4

Download citation

Publish with us

Policies and ethics