Structural Properties and Deformation Patterns of Evolving Strike-slip Faults: Numerical Simulations Incorporating Damage Rheology

  • Yaron Finzi
  • Elizabeth H. Hearn
  • Yehuda Ben-Zion
  • Vladimir Lyakhovsky
Part of the Pageoph Topical Volumes book series (PTV)


We present results on evolving geometrical and material properties of large strike-slip fault zones and associated deformation fields, using 3-D numerical simulations in a rheologically-layered model with a seismogenic upper crust governed by a continuum brittle damage framework over a viscoelastic substrate. The damage healing parameters we employ are constrained using results of test models and geophysical observations of healing along active faults. The model simulations exhibit several results that are likely to have general applicability. The fault zones form initially as complex segmented structures and evolve overall with continuing deformation toward contiguous, simpler structures. Along relatively-straight mature segments, the models produce flower structures with depth consisting of a broad damage zone in the top few kilometers of the crust and highly localized damage at depth. The flower structures form during an early evolutionary stage of the fault system (before a total offset of about 0.05 to 0.1 km has accumulated), and persist as continued deformation localizes further along narrow slip zones. The tectonic strain at seismogenic depths is concentrated along the highly damaged cores of the main fault zones, although at shallow depths a small portion of the strain is accommodated over a broader region. This broader domain corresponds to shallow damage (or compliant) zones which have been identified in several seismic and geodetic studies of active faults. The models produce releasing stepovers between fault zone segments that are locations of ongoing interseismic deformation. Material within the fault stepovers remains damaged during the entire earthquake cycle (with significantly reduced rigidity and shearwave velocity) to depths of 10 to 15 km. These persistent damage zones should be detectable by geophysical imaging studies and could have important implications for earthquake dynamics and seismic hazard.

Key words

Damage rheology fault zone structure strike-slip fault evolution compliant zones fault stepovers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agnon, A. and Lyakhovsky, V., Damage distribution and localization during dyke intrusion. In (G. Baer and A. Heimann, eds), The Physics and Chemistry of Dyke Rotterdam, Balkema, 1995) pp. 65–78.Google Scholar
  2. Ambraseys, N. N. (1970), Some characteristic features of the North Anatolian fault zone, Tectonophysics 9, 143–165.CrossRefGoogle Scholar
  3. Ampuero, J.-P. and Ben-Zion, Y. (2008), Cracks, pulses and macroscopic asymmetry of dynamic rupture on a bimaterial interface with velocity-weakening friction, Geophys. J. Int. 173, 674–692, doi: 10.1111/j.1365-246X. 2008.03736.x.CrossRefGoogle Scholar
  4. Andrews, D. J. (2005), Rupture dynamics with energy loss outside the slip zone, J. Geophys. Res. 110, B01307, doi: 10.1029/2004JB003191.CrossRefGoogle Scholar
  5. Aydin, A. and Johnson, A.M. (1983), Analysis of faulting in porous sandstones, J. Struct. Geol. 5, 19–31.CrossRefGoogle Scholar
  6. Armijo, R., Meyer, B., King, G. C. P., Rigo, A., and Papanastassiou, D. (1996), Quaternary evolution of the Corinth Rift and its implications for the Late Cenozoic evolution of the Aegean, Geophys. J. Int. 126, 11–53.CrossRefGoogle Scholar
  7. Baisch, S., and Bokelmann, G. H. R. (2001), Seismic waveform attributes before and after the Loma Prieta earthquake: Scattering change near the earthquake and temporal recovery, J. Geophys. Res. 106, 16,323–16,337.CrossRefGoogle Scholar
  8. Ben-Zion, Y. (1996), Stress, slip and earthquakes in models of complex single-fault systems incorporating brittle and creep deformations, J. Geophys. Res. 101, 5677–5706.CrossRefGoogle Scholar
  9. Ben-Zion, Y. and Aki, K. (1990), Seismic radiation from an SH line source in a laterally heterogeneous planar fault zone, Bull. Seismol Soc. Am. 80, 971–994.Google Scholar
  10. Ben-Zion, Y. and Andrews, D. J. (1998), Properties and implications of dynamic rupture along a material interface, Bull. Seismol. Soc. Am. 88(4), 1085–1094.Google Scholar
  11. Ben-Zion, Y., Henyey, T., Leary, P. and Lund, S. (1990), Observations and implications of water well and creepmeter anomalies in the Mojave segment of the San Andreas fault zone, Bull. Seismol. Soc. Am. 80, 1661–1676.Google Scholar
  12. Ben-Zion, Y. and Lyakhovsky, V. (2006), Analysis of aftershocks in a lithospheric model with seismogenic zone governed by damage rheology, Geophys. J. Int. 165, 197–210.CrossRefGoogle Scholar
  13. Ben-Zion, Y., Peng, Z., Okaya, D., Seeber, L., Armbruster, J. G., Ozer, N., Michael, A. J., Baris, S. and Aktar, M. (2003), A shallow fault zone structure illuminated by trapped waves in the Karadere-Duzce branch of the North Anatolian Fault, western Turkey, Geophys. J. Int. 152, 699–717.CrossRefGoogle Scholar
  14. Ben-Zion, Y. and Sammis, C. (2003), Characterization of Fault Zones, Pure Appl. Geophys. 160, 677–715.CrossRefGoogle Scholar
  15. Ben-Zion, Y. and Shi, Z. (2005), Dynamic rupture on a material interface with spontaneous generation of plastic strain in the bulk, Earth Planet. Sci. Lett. 236, 486–496, doi: 10.1016/j.epsl.2005.03.025.CrossRefGoogle Scholar
  16. Bercovici, D. and Ricard, Y. (2003), Energetics of a two-phase model of lithospheric damage, shear localization and plate-boundary formation, Geophys. J. Int. 152 (3), 581–596 doi: 10.1046/j.1365-246X.2003.01854.xCrossRefGoogle Scholar
  17. Budiansky, B. and O’Connell, R. J. (1976), Elastic moduli of a cracked solid, Int. J. Sol. Struct. 12, 81–97.CrossRefGoogle Scholar
  18. Carter, N. L. and Tsenn, M. C. (1987), Flow properties of continental lithosphere, Tectonophysics 136, 27–63.CrossRefGoogle Scholar
  19. Chester, F. M. and Chester, J. S. (1998), Ultracataclasite structure and friction processes of the Punchbowl Fault, San Andreas System, California, Tectonophysics 295, 199–221.CrossRefGoogle Scholar
  20. Chester, F. M. (1995), Geologic studies of deeply exhumed faults of the San Andreas System, Southern California: Collaborative research with Saint Louis University and Utah State University: NEHRP annual project summary, award No. 94G2457, v. 37.Google Scholar
  21. Chester, F. M., Evans, J. P., and Biegel, R. L. (1993), Internal structure and weakening mechanisms of the San Andreas Fault, J. Geophys. Res. 98, 771–786.CrossRefGoogle Scholar
  22. Christensen, N. I., and Mooney, W. D. (1995), Seismic velocity structure and composition of the continental crust: A global view, J. Geophys. Res. 100 (B6): 9761–9788.CrossRefGoogle Scholar
  23. Cochran, E. S., Vidale, J. E., and Li, Y. G. (2003), Near-fault anisotropy following the Hector Mine earthquake, J. Geophys. Res. 108(B9), 2436, doi: 10.1029/2002JB002352.CrossRefGoogle Scholar
  24. Cowie, P. A., Vanneste, C., and Sornette, D. (1993), Statistical Physics Model for the Spatiotemporal Evolution of Faults, J. Geophys. Res. 98(B12), 21,809–21,821.CrossRefGoogle Scholar
  25. Cundall, P. A. and Board, M. A microcomputer program for modeling large-strain plasticity problems. In Numerical Methods in Geomechanics, Proc. 6th Int. Conf. Numerical Methods in Geomechanics, Innsbruck, (ed. Swoboda ), (C., Rotterdam, Balkema, 1988) pp. 2101–2108.Google Scholar
  26. De Paola, N., Holdsworth, R. E., Collettini, C., McCaffrey, K. J. W., and Barchi, M. R. (2007), The structural evolution of dilational step-overs in regional transtensional zones. (Cunningham W. D. and Mann, P., eds), Tectonics of Strike-Slip Restraining and Releasing Bends (Geolog. Soc., London. Special Publications), 290, pp. 433–445.Google Scholar
  27. Dieterich, J. H. (1972), Time-dependent friction in rocks, J. Geophys. Res. 77, 3690–3697.CrossRefGoogle Scholar
  28. Dieterich, J. H. (1978), Time-dependent friction and the mechanics of stick-slip, Pure Appl. Geophys. 116, 790–805.CrossRefGoogle Scholar
  29. Dieterich, J. H. (1979), Modeling of rock friction 1. Experimental results and constitutive equations, J. Geophys. Res. 84, 2161–2168.CrossRefGoogle Scholar
  30. Dolan, J. F., Bowman, D. D., and Sammis, C. G. (2007), Long-range and long-term fault interactions in Southern California, Geology, 35, 855–858.CrossRefGoogle Scholar
  31. Dor, O., Rockwell, T. K. and Ben-Zion, Y. (2006), Geological observations of damage asymmetry in the structure of the San Jacinto, San Andreas and Punchbowl Faults in Southern California: A possible indicator for preferred rupture propagation direction, Pure Appl. Geophys. 163, 301–349, doi: 10.1007/s00024-005-0023-9.CrossRefGoogle Scholar
  32. Dor, O., Yildirim, C., Rockwell, T.K., Ben-Zion, Y., Emre, O., Sisk, M., Duman, T. Y. (2008), Geologic and geomorphologic asymmetry across the rupture zones of the 1943 and 1944 earthquakes on the North Anatolian Fault: Possible signals for preferred earthquake propagation direction, Geophys. J. Int., doi: 10.1111/j.1365-246X.2008.03709.x.Google Scholar
  33. Dunham, E. M. and Rice, J. R. (2008), Earthquake slip betweenn dissimilar poroelastic materials, J. Geophys. Res., in press.Google Scholar
  34. Eissa, E. A. and Kazi, A. (1988), Relation between static and dynamic Young’s Moduli of Rocks, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 25(6), 479–482.CrossRefGoogle Scholar
  35. Evans, J. P., Shipton, Z. K., Pachell, M. A., Lim, S. J., and Robeson, K. The structure and composition of exhumed faults, and their implication for seismic processes. In Proc. of the 3rd Confer. on Tecto. problems of the San Andreas system, (Stanford University 2000).Google Scholar
  36. Fialko, Y. (2004), Probing the mechanical properties of seismically active crust with space geodesy: Study of the coseismic deformation due to the 1992 M w 7.3 Landers (southern California) earthquake, J. Geophys Res. 109, B03307, doi: 10.1029/2003JB002756.CrossRefGoogle Scholar
  37. Fialko, Y., Sandwell, D., Agnew, D., Simons, M., Shearer, P., and Minster, B. (2002), Deformation on nearby faults induced by the 1999 Hector Mine earthquake, Science 297, 1858–1862.CrossRefGoogle Scholar
  38. Finzi, Y., Hearn, E. H., Lyakhovsky, V., and Ben-Zion, Y. (2006), 3-D viscoelastic damage rheology models of strike-slip fault systems and their associated surface deformation, EOS Trans. AGU, 87(52), Fall Meet. Suppl., Abstract T21C-0425.Google Scholar
  39. Graymer, R. W., Langenheim, V.E., Simpson, R.W., Jachens, R.C., and Ponce, D.A. (2007), Relatively simple through-going fault planes at large-earthquake depth may be concealed by the surface complexity of strike-slip faults. In (Cunningham, W.D., and Mann, Paul, eds.) Tectonics of Strike-Slip Restraining and Releasing Bends, (Geological Society of London Special Publication 2007), vol. 290, pp. 189–201, doi: 10.1144/SO290.5 0305-8719/07.Google Scholar
  40. Hamiel, Y., Lyakhovsky, V., and Agnon, A. (2005), Rock dilation, nonlinear deformation, and pore pressure change under shear, Earth Planet. Sci. Lett. 237, 577–589CrossRefGoogle Scholar
  41. Hamiel, Y., Katz, O., Lyakhovsky., Reches, Z. and Fialko, Y. (2006), Stable and unstable damage evolution in rocks with implications to fracturing of granite, Geophys. J. Int. 167, 1005–1016.CrossRefGoogle Scholar
  42. Hamiel, Y., Liu, Y., Lyakhovsky, V., Ben-Zion, Y., and Lockner, D. (2004), A visco-elastic damage model with applications to stable and unstable fracturing, Geophys. J. Int. 159, 1155–1165.CrossRefGoogle Scholar
  43. Hamiel, Y. and Fialko, Y. (2007), Structure and mechanical properties of faults in the North Anatolian Fault system from InSAR observations of coseismic deformation due to the 1999 Izmit (Turkey) earthquake, J. Geophys. Res. 112, B07412, doi: 10.1029/2006JB004777.CrossRefGoogle Scholar
  44. Harris, R. A. and Day, S. M. (1999), Dynamic 3-D simulations of earthquakes on en echelon faults, Geophys. Res. Lett. 26, 2089–2092.CrossRefGoogle Scholar
  45. Harris, R. A. and Day, S. M. (1993), Dynamics of fault interaction: Parallel strike-slip faults, J. Geophys. Res. 98, 4461–4472.CrossRefGoogle Scholar
  46. Harris, R. A., Archuleta, R. J., and Day, S. M. (1991), Fault steps and the dynamic rupture process: 2-D numerical simulations of a spontaneously propagating shear fracture, Geophys. Res. Lett. 18, 893–896.CrossRefGoogle Scholar
  47. Hearn, E. H. and Fialko, Y. (2009), Coseismic deformation of Mojave compliant zones and crustal stresses, J. Geophys. Res., in press.Google Scholar
  48. Hickman, S., Sibson, R.H., and Bruhn, R. (1995), Introduction to a special section, mechanical involvement of fluids in faulting, J. Geophys. Res. 100, 12,831–12,840.CrossRefGoogle Scholar
  49. Ide, J. M. (1936), Comparison of statically and dynamically determined Young’s modulus of rocks, Proc. Nat. Acad. Sci., U.S.A. 22, 81–92.CrossRefGoogle Scholar
  50. Karabulut, H. and Bouchon, M. (2007), Spatial variability and non-linearity of strong ground motion near a fault, Geoph. J. Int. 170, 1, 262–274.CrossRefGoogle Scholar
  51. Kim, Y.S., Peacock, D.C.P. and Sanderson, D.J. (2004), Fault damage zones, J. Struct. Geology 26, 503–517.CrossRefGoogle Scholar
  52. King, G. (1986), Speculations on the geometry of the initiation and termination processes of earthquake rupture and its relation to morphology and geological structure, Pure Appl. Geophys., 124, 567–585.CrossRefGoogle Scholar
  53. Kirby, S. H. and Kronenberg, A. K. (1987), Rheology of the lithosphere: Selected topics, Rev. Geophys. 25, 1219–1244.CrossRefGoogle Scholar
  54. Korneev, V.A., Nadeau, R.M. and McEvilly, T.V. (2003), Seismological studies at Parkfield IX: Fault-one imaging using guided wave attenuation, Bull. Seismol. Soc. Am. 93, 1415–1426.CrossRefGoogle Scholar
  55. Lewis, M. A., Peng, Z., Ben-Zion, Y., and Vernon, F. (2005), Shallow seismic trapping structure in the San Jacinto fault zone, Geophys. J. Int. 162, 867–881, doi:10.1111/j.1365-246X.2005.02684.x.CrossRefGoogle Scholar
  56. Li, Y. G., Leary, P., Aki, K., and Malin, P. (1990), Seismic trapped modes in the Oroville and San Andreas fault zones, Science, 249, 763–766.CrossRefGoogle Scholar
  57. Li, Y.-G., Aki, K., Adams, D., Hasemi, A., and Lee, W. H. K. (1994), Seismic guided waves trapped in the fault zone of the Landers, California, earthquake of 1992, J. Geophys. Res. 99(B6), 11,705–11,722.CrossRefGoogle Scholar
  58. Li, Y.-G., Chen, P., Cochran, E. S., Vidale, J. E., and Burdette, T. (2006), Seismic evidence for rock damage and healing on the San Andreas fault associated with the 2004 M 6.0 Parkfield Earthquake Bull. Seismol. Soc. Am., 96, 4B, S349–S363.CrossRefGoogle Scholar
  59. Li, Y., Teng T. L., and Ben-Zion, Y. (2004), Systematic analysis of shear-wave splitting in the aftershock region of the 1999 Chi-Chi earthquake: Evidence for shallow anisotropic structure and lack of systematic temporal variations, Bull. Seismol. Soc. Am. 94, 2330–2347.CrossRefGoogle Scholar
  60. Lyakhovsky, V. and Myasnikov, V. P. (1984), On the behavior of elastic cracked solid, Phys. Solid Earth 10, 71–75.Google Scholar
  61. Lyakhovsky, V. and Myasnikov, V. P. (1985), On the behavior of visco-elastic cracked solid, Phys. Solid Earth 4, 28–35.Google Scholar
  62. Lyakhovsky, V., Ben-Zion, Y., and Agnon, A. (1997a), Distributed damage, faulting, and friction, J. Geophys. Res. 102, 27,635–27,649.CrossRefGoogle Scholar
  63. Lyakhovsky, V., Reches, Z., Weinberger, R., and Scott, T.E. (1997b), Non-linear elastic behavior of damaged rocks, Geophys. J. Int. 130, 157–166.CrossRefGoogle Scholar
  64. Lyakhovsky, V., Ben-Zion, Y., and Agnon, A. (2001), Earthquake cycle, faults, and seismicity patterns in rheologically layered lithosphere, J. Geophys. Res. 106, 4103–4120.CrossRefGoogle Scholar
  65. Lyakhovsky, V., Ben-Zion, Y., and Agnon, A. (2005), A viscoelastic damage rheology and rate-and state-dependent friction, Geophys. J. Int. 161, 179–190.CrossRefGoogle Scholar
  66. Lyakhovsky, V. and Ben-Zion, Y. (2008), Scaling relations of earthquakes and aseismic deformation in a damage rheology model, Geophys. J. Int. 172, 651–662, doi:10.1111/j.1365-246X.2007.03652.x.CrossRefGoogle Scholar
  67. Lyakhovsky, V., and Ben-Zion, Y. (2009), Evolving fault zone structures in a damage rheology model, Geochemistry, Geophysics, Geosystems, in review.Google Scholar
  68. Malvern, L.E. Introduction to the Mechanics of a Continuum Medium (New Jersey, Prentice-Hall, Inc., 1969), 713 pp.Google Scholar
  69. McGuire, J. and Ben-Zion, Y. (2005), High-resolution imaging of the Bear Valley section of the San Andreas Fault at seismogenic depths with fault-zone head waves and relocated seismicity, Geophys. J. Int. 163, 152–164; doi: 10.1111/j.1365-246X.2005.02703.x.CrossRefGoogle Scholar
  70. Micklethwaite, S. and Cox, S. F. (2004), Fault-segment rupture, aftershock-zone fluid flow and mineralization, Geology 32, 813–816.CrossRefGoogle Scholar
  71. Mooney, W. D. and Ginzburg, A. (1986), Seismic measurements of the internal properties of fault zones, Pure Appl. Geophys. 124, 141–157.CrossRefGoogle Scholar
  72. Nadeau, R., Antolik, M., Johnson, P., Foxall, W., and McEvilly, T. V. (1994), Seismological studies at Parkfield III: Microearthquake clusters in the study of fault-zone dynamics. Bull. Seismol. Soc. Am. 83, 247–263.Google Scholar
  73. Oglesby, D. D., Day, S. M., Li, Y.-G., and Vidale, J. E. (2003), The 1999 Hector Mine Earthquake: The dynamics of a branched fault system, Bull. Seismol. Soc. Am. 93, 6, 2459–2476.CrossRefGoogle Scholar
  74. Olson, J., and Pollard, D. D. (1989), Inferring paleostresses from natural fracture patterns: A new method, Geology 17, 4, 345–348.CrossRefGoogle Scholar
  75. Peng, Z. and Ben-Zion, Y. (2004), Systematic analysis of crystal anisotropy along the Karadere-Duzce branch of the north Anatolian fault, Geophys. J. Int. 159, 253–274, doi:10.1111/j.1365-46X.2004.02379.x.CrossRefGoogle Scholar
  76. Peng, Z. and Ben-Zion, Y. (2005), Spatio-temporal variations of crustal anisotropy from similar events in aftershocks of the 1999 M7.4 İzmit and M7.1 Düzce, Turkey, earthquake sequences, Geophys. J. Int. 160(3), 1027–1043, doi: 10.1111/j.1365-246X.2005.02569.x.CrossRefGoogle Scholar
  77. Peng, Z. and Ben-Zion, Y. (2006), Temporal changes of shallow seismic velocity around the Karadere-Duzce branch of the north Anatolian fault and strong ground motion, Pure Appl. Geophys. 163, 567–600, doi: 10.1007/s00024-005-0034-6.CrossRefGoogle Scholar
  78. Peng, Z., Ben-Zion, Y., Michael, A. J., and Zhu, L. (2003), Quantitative analysis of seismic trapped waves in the rupture zone of the 1992 Landers, California earthquake: Evidence for a shallow trapping structure, Geophys. J. Int. 155, 1021–1041.CrossRefGoogle Scholar
  79. Poliakov, A., Cundall, P., Podladchikov, Y., and Lyakhovsky, V. An explicit inertial method for the simulation of viscoelastic flow: an evaluation of elastic effects on diapiric flow in two-and three-layers model. In Proc. NATO Advanced Study Institute on Dynamic Modeling and Flow in the Earth and Planets, (Runcorn, K.E. and Stone, D., eds) (Dordrecht, Kluwer, 1993) pp. 175–195.Google Scholar
  80. Poupinet, G., Ellsworth, W. L., and Frechet, J. (1984), Monitoring velocity variations in the crust using earthquake doublets: An application to the Calaveras Fault, California, J. Geophys. Res. 89(B7), 5719–5731.CrossRefGoogle Scholar
  81. Powell, R. E. and Weldon, R. J. (1992), Evolution of the San Andreas Fault, Annu. Rev. Earth Planet Sci. 20, 431–468.CrossRefGoogle Scholar
  82. Revenaugh, J. (2000), The relation of crustal scattering to seismicity in southern California, J. Geophys. Res. 105(B11), 25,403–25,422.CrossRefGoogle Scholar
  83. Rice, J.R. and Ben-Zion, Y. (1996), Slip complexity in earthquake fault models, Proc. Natl. Acad. Sci. U.S.A. 93, 3811–1818.CrossRefGoogle Scholar
  84. Rockwell, T. K. and Ben-Zion, Y. (2007), High localization of primary slip zones in large earthquakes from paleoseismic trenches: Observations and implications for earthquake physics, J. Geophys. Res. 112, B10304, doi:10.1029/2006JB004764.CrossRefGoogle Scholar
  85. Rubinstein, J.L. and Beroza, G.C. (2004), Evidence for widespread strong ground motion in the M w 6.9 Loma Prieta eartquake, Bull. Seismol. Soc. Am. 94, 1595–1608.CrossRefGoogle Scholar
  86. Rudnicki, J. W. and Rice, J. R. (2006), Effective normal stress alteration due to pore pressure changes induced by dynamic slip propagation on a plane between dissimilar materials, J. Geophys. Res. 111, B10308, doi:10.1029/2006JB004396.CrossRefGoogle Scholar
  87. Saucier, F. and Humphreys, E.D. (1993), Horizontal crustal deformation in Southern California from joint models of geologic and very long baseline interferometry measurements. In Contributions of Space Geodesy to Geodynamics (D.E. Smith and D.L. Turcotte, eds.), pp. 139–176, (AGU Geodyn. Ser. Vol. 23, Washington D.C. 1993).Google Scholar
  88. Schaff, D. P., Bokelmann, G. H. R., Beroza, G. C., Waldhauser, F., and Ellsworth, W. L. (2002), High-resolution image of Calaveras Fault seismicity, J. Geophys. Res. 107(B9), 2186, doi:10.1029/2001JB000633.CrossRefGoogle Scholar
  89. Schaff, D. P. and Beroza, G. C. (2004), Coseismic and postseismic velocity changes measured by repeating earthquakes, J. Geophys. Res. 109, B10302, doi:10.1029/2004JB003011.CrossRefGoogle Scholar
  90. Schulz, S. E. and Evans, J. P. (2000), Mesoscopic structure of the Punchbowl Fault, Southern California and the geologic and geophysical structure of active strike-slip faults, J. of Struct. Geol. 22, 913–930.CrossRefGoogle Scholar
  91. Segall, P. and Pollard, D. D. (1980), Mechanics of discontinuous faults, J. Geophys. Res. 85, 4337–4350, 1980.CrossRefGoogle Scholar
  92. Sengor, A. M. C., Tuysz, O., Imren, C., Sakinc, M., Eyidogan, H., Gorur, N., Le Pichon, X., and Rangin, C. (2005), The North Anatolian Fault: A new look, Annu. Rev. Earth Planet. Sci. 33, 37–112.CrossRefGoogle Scholar
  93. Sheldon, H. A., and Micklethwaite, S. (2007), Damage and permeability around faults: Implications for mineralization, Geology 35, 10, 903–906.CrossRefGoogle Scholar
  94. Shipton, Z. K., and Cowie, P. A. (2003), A conceptual model for the origin of fault damage zone structures in high-porosity sandstone, J. Struct. Geol. 25, 3, 333–344CrossRefGoogle Scholar
  95. Sibson, R.H. (1985), Stopping of earthquake ruptures at dilational fault jogs, Nature 316, 248–251.CrossRefGoogle Scholar
  96. Sibson, R. H. (2003), Thickness of the seismic slip zone, Bull. Seismol. Soc. Am. 93, 3, 1169–1178.CrossRefGoogle Scholar
  97. Stirling, M. W., Wesnousky, S. G., and Shimazaki, K. (1996), Fault trace complexity, cumulative slip, and the shape of the magnetude-frequency distribution for strikeslip faults: a global survey, Geophys. J. Int. 124, 833–868.CrossRefGoogle Scholar
  98. Stierman, D. J. (1984), Geophysical and geological evidence for fracturing, water circulation and chemical alteration in granitic rocks adjacant to major strike-slip faults, J. Geophys. Res. 89, B7, 5849–5857.CrossRefGoogle Scholar
  99. Sylvester, A. G. (1988), Strike-slip faults, Geol. Soc. Am. 100, 1666–1703.CrossRefGoogle Scholar
  100. Sylvester, A. G. and Smith, R., (1976), Tectonic transpretions and basement controlled deformation in the San Andreas fault zone, Salton trough, California, AAPG Bull. 60, 2081–2102.Google Scholar
  101. Tchalenko, J. S. (1970), Similarities between shear zones of different magnitudes, Geolog. Soc. Am. Bull. 81, 1625–1640.CrossRefGoogle Scholar
  102. Templeton, E. L. and Rice, J. R. (2008), Off-fault plasticity and earthquake rupture dynamics, 1. Dry materials or neglect of fluid pressure changes, J. Geophys. Res.Google Scholar
  103. Tenthorey, E., Cox, S. F., and Todd, H. F. (2003), Evolution of strength recovery and permeability during fluidrock reaction in experimental fault zones, Earth Planet. Sci. Lett. 206(1–2), 161–172.CrossRefGoogle Scholar
  104. Thurber, C., Zhang, H., Waldhauser, F., Hardebeck, J., Michael, A., and Eberhart-Phillips, D. (2006), Three-dimensional compressional wavespeed model, earthquake relocations, and focal mechanisms for the Parkfield, California, Region, Bull. Seismol. Soc. of Am. 96, 4B, S38–S49, doi: 10.1785/0120050825.CrossRefGoogle Scholar
  105. Turcotte, D. L. and Glasscoe, M.T. (2004), A damage model for the continuum rheology of the upper continental crust, Tectonophysics 383, 71–80.CrossRefGoogle Scholar
  106. Wesnousky, S. G. (2006), Predicting the endpoints of earthquake ruptures, Nature 444, 358–360.CrossRefGoogle Scholar
  107. Wesnousky, S. (1994), The Gutenberg-Richter or characteristic earthquake distribution, which is it?, Bull. Seismol. Soc. Am. 84, 1940–1959.Google Scholar
  108. Wilcox, R. E., Harding, T. P., and Seely, D. R. (1973), Basic wrench tectonics, AAPG Bull. 57, 74–96.Google Scholar
  109. Wu, C., Peng, Z. and Ben-Zion, Y. (2009), Non-linearity and temporal changes of fault zone site response associated with strong ground motion, Geophys. J. Int. 176, 265–278, doi: 10.111/j.1365-246x.2008.04005.x.CrossRefGoogle Scholar
  110. Yamashita, T. (2007), Postseismic quasi-static fault slip due to pore pressure change on a bimaterial interface, J. Geophys. Res. 112, B05304, doi:10.1029/2006JB004667.CrossRefGoogle Scholar
  111. Yang, W. and Ben-Zion, Y. (2009), Observational analysis of correlations between aftershock prodectivities and regional conditions in the context of a damage rheology model, Geophys. J. Int., 177, 481–499 doi: 10.1111/j.1365-246x.2009.0414s.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel 2009

Authors and Affiliations

  • Yaron Finzi
    • 1
  • Elizabeth H. Hearn
    • 1
  • Yehuda Ben-Zion
    • 2
  • Vladimir Lyakhovsky
    • 3
  1. 1.Department of Earth and Ocean SciencesUniversity of British ColumbiaVancouverCanada
  2. 2.Department of Earth SciencesUniversity of Southern California LosAngelesUSA
  3. 3.Geological Survey of IsraelJerusalemIsrael

Personalised recommendations