Skip to main content

Nonplanar Faults: Mechanics of Slip and Off-fault Damage

  • Chapter
  • First Online:
Mechanics, Structure and Evolution of Fault Zones

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

Stress interactions and sliding characteristics of faults with random fractal waviness in a purely elastic medium differ both qualitatively and quantitatively from those of faults with planar surfaces. With nonplanar fault models, solutions for slip diverge as resolution of the fractal features increases, and the scaling of fault slip with fault rupture dimension becomes nonlinear. We show that the nonlinear scaling of slip and divergence of solutions arise because stresses from geometric interactions at irregularities along nonplanar faults grow with increasing slip and produce backstresses that progressively impede slip. However, in real materials with finite strength, yielding will halt the growth of the interaction stresses, which will profoundly affect slip of nonplanar faults. We infer that in the brittle seismogenic portion of the Earth’s crust, off-fault yielding occurs on pervasive secondary faults. Predicted rates of stress relaxation with distance from major faults with random fractal roughness follow a power-law relationship that is consistent with reported clustering of background seismicity up to 15 kilometers from faults.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews, D. (2004), Rupture with dynamically determined breakdown displacement, Bull. Seismol. Soc. Am. 94, 769–775.

    Article  Google Scholar 

  • Andrews, D. (2005), Rupture dynamics with energy loss outside the slip zone, J. Geophys. Res.-Sol. Earth 110, B01307.

    Article  Google Scholar 

  • Ben-Zion, Y. and Sammis, C. G. (2003), Characterization of fault zones, Pure Appl. Geophys. 160, 677–715.

    Article  Google Scholar 

  • Bonnet, E., Bour, O., Odling, N. E., Davy, P., Main, I., Cowie, P., and Berkowitz, B. (2001), Scaling of fracture systems in geological media, Rev. Geophys. 39, 347–383..

    Article  Google Scholar 

  • Brown, S. R. and Scholz, C. H. (1985), Broad bandwidth study of the topography of natural rock surfaces, J. Geophys. Res.-Sol. Earth Planets 90, 2575–2582.

    Google Scholar 

  • Caine, J., Evans, J., and Forster, C. (1996), Fault zone architecture and permeability structure, Geology 24, 1025–1028.

    Article  Google Scholar 

  • Candela, T., Renard, F., Bouchon, M., Marsan, D., Schmittbuhl, J., and Voisin, C. (2009), Characterization of fault roughness at various scales: Implications of three-dimensional high resolution topography measurement, Tectonophysics.

    Google Scholar 

  • Chester, F., Field guide to the Punchbowl Fault Zone at Devil’s Punchbowl Los Angeles County Park, California (Texas A&M University, Texas 1999).

    Google Scholar 

  • Chester, F. and Chester, J. (1998), Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California, Tectonophysics 295, 199–221.

    Article  Google Scholar 

  • Chester , et al. (1996).

    Google Scholar 

  • Chester, F., Evans, J., and Biegel, R. (1993), Internal structure and weakening mechanisms of the San-Andreas Fault, J. Geophys. Res.-Sol. Earth 98, 771–786.

    Article  Google Scholar 

  • Chester, F. M. and Chester, J. S. (2000), Stress and deformation along wavy frictional faults, J. Geophys. Res.-Sol. Earth 105, 23421–23430.

    Article  Google Scholar 

  • Dieterich, J. H. (1992), Earthquake nucleation on faults with rate-dependent and state-dependent strength, Tectonophysics 211, 115–134.

    Article  Google Scholar 

  • Dieterich, J. H., Richards-Dinger, K., and Smith, D. E. (2008), Large-scale simulations of fault system seismicity. Paper presented at 6th ACES International Workshop on Earthquake Simulation, Cairns, Australia, May 11–16, 2008.

    Google Scholar 

  • Duan, B. and Oglesby, D. D. (2005), Multicycle dynamics of nonplanar strike-slip faults, J. Geophys. Res. 110, B03304.

    Article  Google Scholar 

  • Duan, B. and Oglesby, D. D. (2006), Heterogeneous fault stresses from previous earthquakes and the effect on dynamics of parallel strike slip earthquakes, J. Geophys. Res. 111, B05309.

    Article  Google Scholar 

  • Fournier, A., Fussell, D., and Carpenter, L. (1982), Computer rendering of stochastic-models, Communication of the ACM 25, 371–384.

    Article  Google Scholar 

  • Hauksson, E. (2009), Spatial Separation of Large Earthquakes, Aftershocks, and Background Seismicity: Analysis of Interseismic and Coseismic Seismicity Patterns in Southern California, Pure Appl. Geophys., Special Frank Evison Issue, in press.

    Google Scholar 

  • King, G. C. P. (1983), The accommodation of large strains in the upper lithosphere of the Earth and other solids by self-similar fault systems — The geometrical origin of the b-value, Pure Appl. Geophys. 121, 761–815.

    Article  Google Scholar 

  • King, G. C. P. (1986), Speculations on the geometry of the initiation and termination processes of earthquake rupture and its relation to morphology and geological structure, Pure Appl. Geophys. 124, 567–585.

    Article  Google Scholar 

  • King, G. C. P. and Nabélek, J. (1985), Role of fault bends in the initiation and termination of earthquake rupture, Science 228, 984–987.

    Article  Google Scholar 

  • Lockner, D., Byerlee, J., Kuksenko, V., Ponomarev, A., and Sidorin, A. (1991), Quasi-static fault growth and shear fracture energy in granite, Nature 350, 39–42.

    Article  Google Scholar 

  • Lyakhosvsky, V., Ben-Zion, Y., and Agnon, A. (1997), Distributed damage, faulting, and friction, J. Geophys. Res. 102, 27635–27649.

    Article  Google Scholar 

  • Lyakhovsky, V. (2001), Scaling of fracture length and distributed damage, Geophys. J. Internatil. 144, 114–122.

    Article  Google Scholar 

  • Martel, S., Pollard, D., and Segall, P. (1988), Development of simple strike-slip fault zones, Mount Abbot quadrangle, Sierra-Nevada, California, Geol. Soc. Am. Bull. 100, 1451–1465.

    Article  Google Scholar 

  • Nielsen, S. B. and Knopoff, L. (1998), The equivalent strength of geometrical barriers to earthquakes, J. Geophys. Res.-Sol. Earth 103, 9953–9965.

    Article  Google Scholar 

  • Okubo, P. G. and Aki, K. (1987), Fractal geometry in the San-Andreas fault system, J. Geophys. Res.-Sol. Earth Planets 92, 345–355.

    Article  Google Scholar 

  • Peitgen, H., Jürgens, H., and Saupe, D., Chaos and Fractals: New Frontiers of Science (Springer-Verlag, New York 1992).

    Google Scholar 

  • Power, W. L. and Tullis, T. E. (1991), Euclidean and fractal models for the description of rock surface roughness, J. Geophys. Res. 96, 415–424.

    Article  Google Scholar 

  • Powers, P. M. and Jordan, T. H. (2008), Distribution of seismicity across strike-slip faults in California, EOS Trans. AGU, 89, Fall Meet. Suppl., Abstract S21B–1831.

    Google Scholar 

  • Reches, Z. and Lockner, D. (1994), Nucleation and growth of faults in brittle rocks, J. Geophys. Res.-Sol. Earth 99, 18159–18173.

    Article  Google Scholar 

  • Rice, J., Sammis, C., and Parsons, R. (2005), Off-fault secondary failure induced by a dynamic slip pulse, Bull. Seismol. Soc. Am. 95, 109–134.

    Article  Google Scholar 

  • Sagy, A., Brodsky, E., and Axen, G. (2007), Evolution of fault-surface roughness with slip, Geology, 35, 283–286.

    Article  Google Scholar 

  • Saucier, F. E., Humphreys, E., and Axen, G. (2007), Evolution of fault-surface roughness with slip, Geology, 35, 283–286.

    Article  Google Scholar 

  • Saucier, F. E., Humphreys, E., and Weldon, R. (1992), Stress near geometrically complex strike-slip faults — Application to the San-Andreas Fault at Cajon Pass, Southern California, J. Geophys. Res.-Sol. Earth 97, 5081–5094.

    Article  Google Scholar 

  • Scholz, C. H. and Aviles, C. A. (Eds.), The Fractal Geometry of Faults and Faulting, 147–156 pp. (Am. Geophys. Union, Washington D.C. 1986).

    Google Scholar 

  • Smith, D. E. and Dieterich, J. H. (2008), Rate-state modeling of stress relaxation in geometrically complex systems. Paper presented at Seismol. Soc. Am. Annual Meeting, Santa Fe, NM, April 16–18, 2008.

    Google Scholar 

  • Starr, A. (1928), Slip in a crystal and rupture in a solid due to shear, Proc. Cambridge Philosoph. Soc. 24, 489–500.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag, Basel

About this chapter

Cite this chapter

Dieterich, J.H., Smith, D.E. (2009). Nonplanar Faults: Mechanics of Slip and Off-fault Damage. In: Ben-Zion, Y., Sammis, C. (eds) Mechanics, Structure and Evolution of Fault Zones. Pageoph Topical Volumes. Birkhäuser Basel. https://doi.org/10.1007/978-3-0346-0138-2_12

Download citation

Publish with us

Policies and ethics