Skip to main content

Transformations Between Fractals

  • Conference paper
Fractal Geometry and Stochastics IV

Part of the book series: Progress in Probability ((PRPR,volume 61))

Abstract

We observe that there exists a natural homeomorphism between the attractors of any two iterated function systems, with coding maps, that have equivalent address structures. Then we show that a generalized Minkowski metric may be used to establish conditions under which an affine iterated function system is hyperbolic. We use these results to construct families of fractal homeomorphisms on a triangular subset of ℝ2. We also give conditions under which certain bilinear iterated function systems are hyperbolic and use them to generate families of homeomorphisms on the unit square. These families are associated with “tilings” of the unit square by fractal curves, some of whose box-counting dimensions can be given explicitly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ross Atkins, M.F. Barnsley, David C. Wilson, Andrew Vince, A characterization of point-fibred affine iterated function systems, Preprint, submitted for publication, (2009).

    Google Scholar 

  2. M.F. Barnsley and S.G. Demko, Iterated function systems and the global construction of fractals, Proc. Roy. Soc. London Ser. A 399 (1985) 243–275.

    Article  MATH  MathSciNet  Google Scholar 

  3. M.F. Barnsley, Fractal functions and interpolation. Constr. Approx. 2 (1986), no. 4, 303–329.

    Article  MATH  MathSciNet  Google Scholar 

  4. -, Theory and application of fractal tops. 3–20, Fractals in Engineering: New Trends in Theory and Applications. Lévy-Véhel J.; Lutton, E. (eds.), Springer-Verlag, London Limited, 2005.

    Google Scholar 

  5. -, Superfractals, Cambridge University Press, Cambridge, 2006.

    Google Scholar 

  6. -, Transformations between self-referential sets, Amer. Math. Monthly 116 (2009) 291–304.

    Article  MathSciNet  Google Scholar 

  7. M.F. Barnsley, J.E. Hutchinson, New methods in fractal imaging, Proceedings of the International Conference on Computer Graphics Imaging and Visualization, (July 26–28, 2006), IEEE Society, Washington D.C. 296–301.

    Google Scholar 

  8. M.F. Barnsley, P. Massopust, M. Porter, Fractal interpolation and superfractals using bilinear transformations, Preprint, 2009.

    Google Scholar 

  9. Leonard M. Blumenthal, Theory and Applications of Distance Geometry, Chelsea Publishing Company, New York, 1970.

    MATH  Google Scholar 

  10. Herbert Buseman, The Geometry of Geodesics, Academic Press, New York, 1955.

    Google Scholar 

  11. August Florian, On a metric for a class of compact convex sets, Geometriae Dedicata 30 (1989) 69–80.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Hata, On the structure of self-similar sets, Japan J. Appl. Math. 2 (1985) 381–414.

    Article  MATH  MathSciNet  Google Scholar 

  13. J.E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981) 713–747.

    Article  MATH  MathSciNet  Google Scholar 

  14. Atsushi Kameyama, Distances on topological self-similar sets, Proceedings of Symposia in Pure Mathematics, Volume 72.1, 2004.

    Google Scholar 

  15. -, Self-similar sets from the topological point of view. Japan J. Ind. Appl. Math. 10 (1993) 85–95.

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems. With a Supplementary Chapter by Katok and Leonardo Mendoza. Cambridge University Press, Cambridge, 1995.

    Google Scholar 

  17. Bernd Kieninger, Iterated Function Systems on Compact Hausdorff Spaces, Shaker Verlag, Aachen, 2002.

    MATH  Google Scholar 

  18. J. Kigami, Harmonic calculus on p.c.f. self-similar sets, Trans. Amer. Math. Soc. 335 (1993) 721–755.

    Article  MATH  MathSciNet  Google Scholar 

  19. J. Kigami, Analysis on Fractals, Cambridge University Press, Cambridge, 2001.

    Book  MATH  Google Scholar 

  20. Maria Moszyńska, Selected Topics in Convex Geometry, Birkhäuser, Boston, 2006.

    Google Scholar 

  21. James R. Munkres, Topology, Prentice Hall, 2000.

    Google Scholar 

  22. R. Tyrrel Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.

    Google Scholar 

  23. R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, 1993.

    Google Scholar 

  24. A.C. Thompson, Minkowski Geometry, Cambridge University Press, 1996.

    Google Scholar 

  25. Claude Tricot, Curves and Fractal Dimension, Springer-Verlag, Berlin, 1995.

    MATH  Google Scholar 

  26. R.F. Williams, Composition of contractions, Bol. da Soc. Brasil de Mat. 2 (1971) 55–59.

    Article  MATH  Google Scholar 

  27. Roger Webster, Convexity, Oxford University Press, Oxford, 1994.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Barnsley, M.F. (2009). Transformations Between Fractals. In: Bandt, C., Zähle, M., Mörters, P. (eds) Fractal Geometry and Stochastics IV. Progress in Probability, vol 61. Birkhäuser Basel. https://doi.org/10.1007/978-3-0346-0030-9_8

Download citation

Publish with us

Policies and ethics