Skip to main content

Self-similarity and Random Walks

  • Conference paper

Part of the book series: Progress in Probability ((PRPR,volume 61))

Abstract

This is an introductory level survey of some topics from a new branch of fractal analysis — the theory of self-similar groups. We discuss recent works on random walks on self-similar groups and their applications to the problem of amenability for these groups.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Claire Anantharaman-Delaroche and Jean Renault, Amenable groupoids, Monographies de L’Enseignement Mathématique [Monographs of L’Enseignement Mathématique], vol. 36, L’Enseignement Mathématique, Geneva, 2000, With a foreword by Georges Skandalis and Appendix B by E. Germain. MR 2001 m:22005.

    MATH  Google Scholar 

  2. D. V. Anosov, On N.N. Bogolyubov’s contribution to the theory of dynamical systems, Uspekhi Mat. Nauk 49 (1994), no. 5 (299), 5–20 MR 1311227 (96a:01029).

    MathSciNet  Google Scholar 

  3. André Avez, Entropie des groupes de type fini, C. R. Acad. Sci. Paris Sér. A-B 275 (1972), A1363–A1366. MR. 0324741 (48#3090).

    MathSciNet  Google Scholar 

  4. L. Bartholdi and R.I. Grigorchuk, On the spectrum of Hecke type operators related to some fractal groups, Tr. Mat. Inst. Steklova 231 (2000), no. Din. Sist., Avtom. i Beskon. Gruppy, 5–45, MR 1841750 (2002d:37017).

    Google Scholar 

  5. Laurent Bartholdi and Rostislav Grigorchuk, On a group associated to z 2−1, arXiv: math.GR/0203244, 2002.

    Google Scholar 

  6. Laurent Bartholdi, Rostislav Grigorchuk, and Volodymyr Nekrashevych, From fractal groups to fractal sets, Fractals in Graz 2001, Trends Math., Birkhäuser, Basel, 2003, pp. 25–118 MR 2091700 (2005h:20056).

    Google Scholar 

  7. Ben Bielefeld (ed.), Conformal dynamics problem list, Institute for Mathematical Sciences preprint series, no. 90-1, SUNY Stony Brook, 1990, arXiv: math.DS/9201271.

    Google Scholar 

  8. Laurent Bartholdi, Vadim Kaimanovich, and Volodymyr Nekrashevych, On amenability of automata groups, arXiv:0802.2837. 2008.

    Google Scholar 

  9. E. Bondarenko and V. Nekrashevych, Post-critically finite self-similar groups, Algebra Discrete Math. (2003), no. 4, 21–32. MR 2070400 (2005d:20041).

    Google Scholar 

  10. Laurent Bartholdi and Volodymyr Nekrashevych, Thurston equivalence of topological polynomials, Acta Math. 197 (2006), no. 1, 1–51. MR 2285317 (2008c:37072).

    Article  MATH  MathSciNet  Google Scholar 

  11. N. N. Bogolyubov, On some ergodic properties of continuous transformation groups, Nauch. Zap. Kiev Univ. Phys-Mat. Sb. 4 (1939), no. 5, 45–52, in Ukranian, also Selected works in mathematics, Fizmatlit, Moscow, 2006, pp. 213–222 (in Russian).

    Google Scholar 

  12. A.M. Brunner and Said Sidki, The generation of GL. (n, ℤ) by finite state automata, Internat J. Algebra Comput. 8 (1998), no. 1, 127–139. MR 1492064 (99f:20055).

    Article  MathSciNet  Google Scholar 

  13. Laurent Bartholdi and Bálint Virág, Amenability via random walks, Duke Math. J. 130 (2005), no. 1, 39–56. MR 2176547 (2006h:43001).

    Article  MATH  MathSciNet  Google Scholar 

  14. Tullio Ceccherini-Silberstein, Rostislav I. Grigorchuk, and Pierre de la Harpe, Amenability and paradoxical decompositions for pseudogroups and discrete metric spaces, Proc. Steklov Inst. Math. 224 (1999), no. 1, 57–97. MR 1721355 (2001h:43001).

    Google Scholar 

  15. A. Connes and E.J. Woods, Hyperfinite von Neumann algebras and Poisson boundaries of time dependent random walks, Pacific J. Math. 137 (1989), no. 2, 225–243, MR 90h:46100.

    MATH  MathSciNet  Google Scholar 

  16. Mahlon M. Day, Means on semigroups and groups Bull. Amer. Math. Soc. 55 (1949), 1054–1055, abstract 55-11-507.

    Google Scholar 

  17. -, Amenable semigroups, Illinois J. Math. 1 (1957), 509–544. MR 0092128 (19, 1067c).

    MATH  MathSciNet  Google Scholar 

  18. -, Citation classic-amenable semigroups, Current Contents Phys. Chem. Earth (1983), no. 26, 18–18.

    Google Scholar 

  19. Yves Derriennic, Lois “zéro ou deux” pour les processus de Markov. Applications aux marches aléatoires, Ann. Inst. H. Poincaré Sect. B (N.S.) 12 (1976), no. 2, 111–129. MR 54#11508.

    MATH  MathSciNet  Google Scholar 

  20. -, Quelques applications du théorème ergodique sous-additif, Conference on Random Walks (Kleebach, 1979) (French), Astérisque, vol. 74, Soc. Math. France, Paris 1980, pp. 183–201, 4. MR 588163 (82e:60013).

    Google Scholar 

  21. Pierre de la Harpe, Topics in geometric group theory, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2000, MR 1786869 (2001i:20081).

    MATH  Google Scholar 

  22. Kenneth Falconer, Fractal geometry, second ed., John Wiley & Sons Inc., Hoboken NJ, 2003, Mathematical foundations and applications. MR 2118797 (2006b:28001).

    MATH  Google Scholar 

  23. Erling Følner, On groups with full Banach mean value., Math. Scand. 3 (1955), 243–254. MR 0079220 (18,51f).

    MathSciNet  Google Scholar 

  24. Harry Furstenberg, Boundary theory and stochastic processes on homogeneous spaces, Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., vol. XXVI, Williams Coll., Williamstown, Mass., 1972) Amer. Math. Soc., Providence, R.I., 1973, pp. 193–229. MR 50#4815.

    Google Scholar 

  25. Yair Glasner and Shahar Mozes, Automata and square complexes, Geom. Dedicata 111 (2005), 43–64. MR 2155175 (2006g:20112).

    Article  MATH  MathSciNet  Google Scholar 

  26. Rostislav Grigorchuk and Volodymyr Nekrashevych, Self-similar groups, operator algebras and Schur complement, J. Mod. Dyn. 1 (2007), no. 3, 323–370. MR 2318495 (2008e:46072).

    MATH  MathSciNet  Google Scholar 

  27. Frederick P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Mathematical Studies, no. 16, Van Nostrand Reinhold Co., New York, 1969. MR 40#4776.

    Google Scholar 

  28. R.I. Grigorchuk, On Burnside’s problem on periodic groups., Funktsional. Anal. Appl. 14 (1980), no. 1, 41–43. MR 565099 (81m:20045).

    MATH  MathSciNet  Google Scholar 

  29. -, Degrees of growth of finitely generated groups and the theory of invariant means, Math. SSSR Izv. 25 (1985), no. 2, 259–300. MR 764305 (86h:20041).

    Article  MATH  MathSciNet  Google Scholar 

  30. -, An example of a finitely presented amenable group that does not belong to the class EG, Sb. Math. 189 (1998), no. 1–2, 75–95. MR 1616436 (99b:20055).

    Article  MathSciNet  Google Scholar 

  31. Mikhael Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. (1981), no. 53, 53–73. MR 623534 (83b:53041).

    Google Scholar 

  32. Rostislav I. Grigorchuk and Andrzej Żuk, On a torsion-free weakly branch group defined by a three state automaton, Internat. J. Algebra Comput. 12 (2002), no. 1–2, 223–246. International Conference on Geometric and Combinatorial Methods in Group Theory and Semigroup Theory (Lincoln, NE. 2000). MR 2003c:20048.

    Article  MATH  MathSciNet  Google Scholar 

  33. -, Spectral properties of a torsion-free weakly branch group defined by a three state automaton, Computational and statistical group theory Las Vegas, NV/Hoboken, NJ, 2001), Contemp. Math., vol. 298, Amer. Math. Soc., Providence, RI, 2002, pp. 57–82. MR 2003h:60011.

    Google Scholar 

  34. Vadim A. Kaimanovich, Measure-theoretic boundaries of Markov chains, 0–2 laws and entropy, Harmonic analysis and discrete potential theory (Frascati. 1991), Plenum, New York, 1992, pp. 145–180. MR 94h:60099.

    Google Scholar 

  35. -, The Poisson boundary of covering Markov operators, Israel J. Math. 89 (1995), no. 1–3, 77–134. MR 96k:60194.

    Google Scholar 

  36. -, Random walks on Sierpiński graphs: hyperbolicity and stochastic homogenization, Fractals in Graz 2001, Trends Math., Birkhäuser, Basel, 2003, pp. 145–183. MR 2091703 (2005h:28022).

    Google Scholar 

  37. -, “Münchhausen trick” and amenability of self-similar groups., Internat. J. Algebra Comput. 15 (2005), no. 5–6, 907–937. MR 3197814.

    Google Scholar 

  38. Nicolas Kryloff and Nicolas Bogoliouboff, La théorie générale de la mesure dans son application á l’étude des systèmes dynamiques de la mécanique non linéaire, Ann. of Math. (2) 38 (1937), no. 1, 65–113. MR. 1503326.

    MathSciNet  Google Scholar 

  39. Jun Kigami, Analysis on fractals, Cambridge Tracts in Mathematics, vol. 143, Cambridge University Press, Cambridge, 2001. MR 1840042 (2002c:28015).

    Google Scholar 

  40. András Krámli and Domokos Szász, Random walks with internal degrees of freedom. I. Local limit theorems, Z. Wahrsch. Verw. Gebiete 63 (1983), no. 1. 85–95. MR 85f:60098.

    Article  MATH  MathSciNet  Google Scholar 

  41. V.A. Kaimanovich and A.M. Vershik, Random walks on discrete groups: boundary and entropy, Ann. Probab. 11 (1983), no. 3, 457–490. MR 85d:60024.

    Article  MATH  MathSciNet  Google Scholar 

  42. Volodymyr Nekrashevych, Self-similar groups, Mathematical Surveys and Monographs, vol. 117, American Mathematical Society, Providence, RI, 2005, MR 2162164 (2006e:20047).

    MATH  Google Scholar 

  43. -, Free subgroups in groups acting on rooted trees, arXiv:0802.2554, 2008.

    Google Scholar 

  44. Volodymir Nekrashevych and Alexander Teplyaev, Groups and analysis on fractals, Analysis on Graphs and its Applications (Proc. Sympos. Pure Math., Vol. 77), Amer. Math. Soc., Providence, R.I., 2008, pp. 143–180.

    Google Scholar 

  45. Alan L.T. Paterson, Amenability, Mathematical Surveys and Monographs, vol. 29, American Mathematical Society, Providence, RI, 1988. MR 90e:43001.

    MATH  Google Scholar 

  46. Jean-Paul Pier, Amenable locally compact groups, Pure and Applied Mathematics, John Wiley & Sons Inc., New York, 1984, A Wiley-Interscience Publication, MR 86a:43001.

    Google Scholar 

  47. H. Reiter, On some properties of locally compact groups, Nederl. Akad. Wetensch. Proc. Ser. A 68=Indag. Math. 27 (1965), 697–701. MR 0194908 (33#3114).

    MathSciNet  Google Scholar 

  48. V.A. Rohlin, Lectures on the entropy theory of transformations with invariant measure, Uspehi Mat. Nauk 22 (1967), no. 5 (137), 3–56. MR 02172578 (36#349).

    MathSciNet  Google Scholar 

  49. Joseph Rosenblatt, Ergodic and mixing random walks on locally compact groups, Math. Ann. 257 (1981), no. 1, 31–42. MR 83f:43002.

    Article  MATH  MathSciNet  Google Scholar 

  50. Luke G. Rogers and Alexander Teplyaev, Laplacians on the Basilica Julia set, Commun. Pure Appl. Anal. (2009), to appear.

    Google Scholar 

  51. Said Sidki, Automorphisms of one-rooted trees: growth, circuit structure, and acyclicity, J. Math. Sci. (New York) 100 (2000), no. 1, 1925–1943. Algebra. 12. MR 1774362 (2002g:05100).

    Article  MATH  MathSciNet  Google Scholar 

  52. A.M. Vershik and V.A Kaimanovich, Random walks on groups: boundary, entropy, uniform distribution, Dokl. Akad. Nauk SSSR 249 (1979) no. 1, 15–18. MR 553972 (81f:60098).

    MathSciNet  Google Scholar 

  53. John von Neumann, Zur allgemeinen Theorie des Maßes., Fund. Math. 13 (1929), 73–116 and 333, also Collected works, vol. I, pages 599–643.

    MATH  Google Scholar 

  54. Mariya Vorobets and Yaroslav Vorobets, On a free group of transformations defined by an automaton, Geom. Dedicata 124 (2007), 237–249. MR 2318547 (2008i:20030).

    Article  MATH  MathSciNet  Google Scholar 

  55. A.M. Yaglom and I.M Yaglom, Probability and information., Theory and Decision Library, vol. 35, D. Reidel Publishing Co., Dordrecht., 1983, Translated from the third Russian edition by V. K. Jain. MR 736349 (85d:94001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Kaimanovich, V.A. (2009). Self-similarity and Random Walks. In: Bandt, C., Zähle, M., Mörters, P. (eds) Fractal Geometry and Stochastics IV. Progress in Probability, vol 61. Birkhäuser Basel. https://doi.org/10.1007/978-3-0346-0030-9_2

Download citation

Publish with us

Policies and ethics