Skip to main content

Random Cantor Sets and Their Projections

  • Conference paper

Part of the book series: Progress in Probability ((PRPR,volume 61))

Abstract

We discuss two types of random Cantor sets, M-adic random Cantor sets, and Larsson’s random Cantor sets. We will discuss the properties of their ninety and fortyfive degree projections, and for both we give answers to the question whether the algebraic difference of two independent copies of such sets will contain an interval or not.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carlos A. Cabrelli, Kathryn E. Hare, and Ursula M. Molter. Sums of Cantor sets. Ergodic Theory Dynam, Systems, 17(6):1299–1313, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  2. Carlos A. Cabrelli, Kathryn E. Hare, and Ursula M. Molter. Sums of Cantor sets yielding an interval. J. Aust. Math. Soc., 73(3):405–418, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  3. Lincoln Chayes. Aspects of the fractal percolation process. In Fractal geometry and stochastics (Finsterbergen, 1994), volume 37 of Progr. Probab., pages 113–143. Birkhäuser, Basel, 1995.

    Google Scholar 

  4. C.G.T. de A. Moreira and J.-C. Yoccoz. Stable intersections of regular Cantor sets with large Hausdorff dimensions. Ann. of Math. (2), 154:45–96, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  5. F.M. Dekking and G.R. Grimmett. Superbranching processes and projections of random Cantor sets. Probab. Theory Related Fields, 78(3):335–355, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  6. F.M. Dekking and R.W.J. Meester. On the structure of Mandelbrot’s percolation process and other random Cantor sets. J. Statist. Phys., 58(5–6):1109–1126, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  7. F.M. Dekking and K. Simon. On the size of the algebraic difference of two random Cantor sets. Random Structures Algorithms, 32(2):205–222, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  8. F.M. Dekking, K. Simon, and B. Szekely. The algebraic difference of two random Cantor sets: the Larsson family. http://arxiv.org/abs/0901.3304, 2009.

    Google Scholar 

  9. F.M. Dekking and P. v.d. Wal. Fractal percolation and branching cellular automata. Probab. Theory Related Fields, 120(2):277–308, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  10. F. Michel Dekking and Bram Kuijvenhoven. Differences of random Cantor sets and lower spectral radii. http://arxiv.org/abs/0811.0525, 2008.

    Google Scholar 

  11. Henk Don. The Four gap theorem and Differences of random Cantor sets. Delft University of Technology, Delft, January 2009. MSc Thesis, adviser Michel Dekking.

    Google Scholar 

  12. Kemal Ilgar Eroĝlu. On the arithmetic sums of Cantor sets. Nonlinearity, 20(5):1145–1161, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  13. K.J. Falconer. Random fractals. Math. Proc. Cambridge Philos. Soc., 100(3):559–582, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  14. K.J. Falconer and G.R. Grimmett. On the geometry of random Cantor sets and fractal percolation. J. Theoret. Probab., 5(3):465–485, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  15. K.J. Falconer and G.R. Grimmett. Correction: “On the geometry of random Cantor sets and fractal percolation” [J. Theoret. Probab. 5 (1992), no. 3, 465–485. J. Theoret. Probab., 7(1):209–210, 1994.

    Article  MathSciNet  Google Scholar 

  16. Leonid Gurvits. Stability of discrete linear inclusion. Linear Algebra Appl., 231:47–85, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  17. Theodore E. Harris. The theory of branching processes. Dover Phoenix Editions. Springer, Berlin, 1963. Corrected reprint of the 1963 original [Springer, Berlin; MR0163361 (29#664)].

    MATH  Google Scholar 

  18. J.-P. Kahane and J. Peyrière, Sur certaines martingales de Benoit Mandelbrot. Advances in Math., 22(2):131–145, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  19. Per Larsson. L’ensemble différence de deux ensembles de Cantor aléatoires. C. R. Acad. Sci. Paris Sér. I Math., 310(10):735–738, 1990.

    MATH  MathSciNet  Google Scholar 

  20. Per Larsson. The difference set of two Cantor sets, volume 11 of U.U.D.M. Reports. Uppsala University, Thunsbergsvägen 3, 752 38 Uppsala, Sweden, May 1991. Thesis, adviser Lennart Carleson.

    Google Scholar 

  21. Benoit B. Mandelbrot. The fractal geometry of nature. W.H. Freeman and Co., San Francisco, Calif., 1982. Schriftenreihe für den Referenten. [Series for the Referee].

    MATH  Google Scholar 

  22. Peter Mora, Karoly Simon, and Boris Solomyak. The Lebesgue measure of the algebraic difference of two random Cantor sets. Preprint, 2008.

    Google Scholar 

  23. Jacob Palis and Floris Takens. Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations, volume 35 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1993. Fractal dimensions and infinitely many attractors.

    Google Scholar 

  24. Yuval Peres. Intersection-equivalence of Brownian paths and certain branching processes. Comm. Math. Phys., 177(2):417–434, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  25. Yuval Peres and Pablo Shmerkin. Resonance between Cantor sets. Ergodic Theory and Dynamical Systems, 29:201–221, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  26. John N. Tsitsiklis and Vincent D. Blondel. The Lyapunov exponent and joint spectral radius of pairs of matrices are hard — when not impossible — to compute and to approximate. Math. Control Signals Systems, 10(1):31–40, 1997.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Dekking, M. (2009). Random Cantor Sets and Their Projections. In: Bandt, C., Zähle, M., Mörters, P. (eds) Fractal Geometry and Stochastics IV. Progress in Probability, vol 61. Birkhäuser Basel. https://doi.org/10.1007/978-3-0346-0030-9_10

Download citation

Publish with us

Policies and ethics