Skip to main content

Deep Friendly Embedding Space for Clustering

  • Conference paper
  • First Online:
Intelligent Information Processing XII (IIP 2024)

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 703))

Included in the following conference series:

Abstract

Deep clustering has powerful capabilities of dimensionality reduction and non-linear feature extraction, superior to conventional shallow clustering algorithms. Deep learning and clustering can be unified through one objective function, significantly improving clustering performance. However, the features of embedding space may have redundancy and ignore preserved manifold. Besides, the features lack discriminative, which hinders the clustering performance. To solve the above problems, the paper proposes a novel algorithm that improves the discrimination of features, filters redundant features and protects manifold structures for clustering. Firstly, it reduces the dimensionality in the embedding again to filter redundant and preserve the manifold for the features. Then it improves the discriminative of the representation by reducing the intra-class distance. Performance evaluation is carried out on four benchmark datasets and a case study of engineering applications. Comparing with state-of-the-art algorithms indicates that our algorithm performs favorably and demonstrates good potential for real-world applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saxena, A., Prasad, M., Gupta, A., et al.: A review of clustering techniques and developments. Neurocomputing 267, 664–681 (2017)

    Article  Google Scholar 

  2. Ji, X., Henriques, J.F., Vedaldi, A.: Invariant information clustering for unsupervised image classification and segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9865–9874 (2019)

    Google Scholar 

  3. Khanal, S.S., Prasad, P.W.C., Alsadoon, A., et al.: A systematic review: machine learning based recommendation systems for e-learning. Educ. Inf. Technol. 25, 2635–2664 (2020)

    Article  Google Scholar 

  4. Li, X., Li, X., Ma, H.: Deep representation clustering-based fault diagnosis method with unsupervised data applied to rotating machinery. Mech. Syst. Signal Process. 143, 106825 (2020)

    Article  Google Scholar 

  5. Huang, S., Kang, Z., Xu, Z., et al.: Robust deep k-means: an effective and simple method for data clustering. Pattern Recogn. 117, 107996 (2021)

    Article  Google Scholar 

  6. Cai, Z., Yang, X., Huang, T., et al.: A new similarity combining reconstruction coefficient with pairwise distance for agglomerative clustering. Inf. Sci. 508, 173–182 (2020)

    Article  MathSciNet  Google Scholar 

  7. Chen, X., Hou, D., Han, Y., et al.: Clustering analysis of grid nanoindentation data for cementitious materials. J. Mater. Sci. 56(21), 12238–12255 (2021)

    Article  Google Scholar 

  8. Chen, Y., Zhou, L., Bouguila, N., et al.: BLOCK-DBSCAN: fast clustering for large scale data. Pattern Recogn. 109, 107624 (2021)

    Article  Google Scholar 

  9. Kang, Z., Shi, G., Huang, S., et al.: Multi-graph fusion for multi-view spectral clustering. Knowl.-Based Syst. 189, 105102 (2020)

    Article  Google Scholar 

  10. Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: International Conference on Machine Learning. PMLR, pp. 478–487 (2016)

    Google Scholar 

  11. Guo, X., Gao, L., Liu, X., et al.: Improved deep embedded clustering with local structure preservation. IJCAI 1753–1759 (2017)

    Google Scholar 

  12. Guo, X., Liu, X., Zhu, E., et al.: Deep clustering with convolutional autoencoders. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S. (eds.) ICONIP 2017, pp. 373–382. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70096-0_39

  13. Ghasedi Dizaji, K., Herandi, A., Deng, C., et al.: Deep clustering via joint convolutional autoencoder embedding and relative entropy minimisation. In: Proceedings of the IEEE International Conference on Computer Vision 2017, pp. 5736–5745 (2017)

    Google Scholar 

  14. Guo, X., Zhu, E., Liu, X., et al.: Deep embedded clustering with data augmentation. In: Asian Conference on Machine Learning. PMLR, pp. 550–565 (2018)

    Google Scholar 

  15. Opochinsky, Y., Chazan, S.E., Gannot, S., et al.: K-autoencoders deep clustering. In: 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4037–4041. IEEE (2020)

    Google Scholar 

  16. Vincent, P., Larochelle, H., Lajoie, I., et al.: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(12), 3371–3408 (2010)

    MathSciNet  Google Scholar 

  17. Caron, M., Bojanowski, P., Joulin, A., et al.: Deep clustering for unsupervised learning of visual features. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 132–149 (2018)

    Google Scholar 

  18. Yang, J., Parikh, D., Batra, D.: Joint unsupervised learning of deep representations and image clusters. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5147–5156 (2016)

    Google Scholar 

  19. Huang, D., Wang, C.D., Wu, J.S., et al.: Ultra-scalable spectral clustering and ensemble clustering. IEEE Trans. Knowl. Data Eng. 32(6), 1212–1226 (2019)

    Article  Google Scholar 

  20. Bo D, Wang X, Shi C, et al. Structural deep clustering network. In: Proceedings of The Web Conference 2020. 2020: 1400–1410

    Google Scholar 

  21. Affeldt, S., Labiod, L., Nadif, M.: Spectral clustering via ensemble deep autoencoder learning (SC-EDAE). Pattern Recogn. 108, 107522 (2020)

    Article  Google Scholar 

  22. Diallo, B., Hu, J., Li, T., et al.: Deep embedding clustering based on contractive autoencoder. Neurocomputing 433, 96–107 (2021)

    Article  Google Scholar 

  23. Case Western Reserve University. Bearing Data Center (seeded fault test data). http://csegroups.case.edu/bearingdatacenter/home

  24. Yen, G.G., Lin, K.C.: Wavelet packet feature extraction for vibration monitoring. IEEE Trans. Industr. Electron. 47(3), 650–667 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundations of China (no.61976225 and no.61672522).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shifei Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hou, H., Ding, S., Xu, X., Guo, L. (2024). Deep Friendly Embedding Space for Clustering. In: Shi, Z., Torresen, J., Yang, S. (eds) Intelligent Information Processing XII. IIP 2024. IFIP Advances in Information and Communication Technology, vol 703. Springer, Cham. https://doi.org/10.1007/978-3-031-57808-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57808-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57807-6

  • Online ISBN: 978-3-031-57808-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics