Skip to main content

Table Orientation Classification Model Based on BERT and TCSMN

  • Conference paper
  • First Online:
Intelligent Information Processing XII (IIP 2024)

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 703))

Included in the following conference series:

  • 97 Accesses

Abstract

Tables are commonly used for structuring and consolidating knowledge, significantly enhancing the efficiency for human readers to acquire relevant information. However, due to their diverse structures and open domains, employing computational methods for their automatic analysis remains a substantial challenge. Among these challenges, accurately classifying the forms of tables is fundamental for achieving deep comprehension and analysis, forming the basis for understanding, retrieving, and extracting knowledge within tables. Common table formats include row tables, column tables, and matrix tables, where data is arranged in rows, columns, and combinations of rows and columns, respectively. This paper introduces a novel approach for table classification based on the neural network model, TableTC. TableTC initially utilizes fine-tuning of the BERT pre-trained model to comprehend table content. Additionally, it proposes an improved Temporal Convolutional Network (TCN) named Temporal Convolutional Sparse Multilayer Perceptron Network (TCSMN). This network captures sequential structural features of cells and their surrounding neighbors, enhancing the ability to extract semantic features and positions. Finally, it employs an attention mechanism to further augment the capability of extracting row-column positions and semantic features. The evaluation of our proposed method is conducted using table data from scientific literature found in the PubMed Central website. Experimental results demonstrate that TableTC achieves a 2.7% improvement in table classification accuracy, as measured by the F1 score, compared to previous state-of-the-art methods on this dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gazen, B.: Overview of autofeed: an unsupervised learning system for generating webfeeds. In proceedings of the national conference on artificial intelligence, pp. 1601–1604. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press (2006)

    Google Scholar 

  2. Yoshida, M., Torisawa, K., Tsujii, J.: A method to integrate tables of the world wide web. In: Proceedings of the International Workshop on Web Document Analysis (WDA 2001), pp. 31–34 (2001)

    Google Scholar 

  3. Ritze, D., Lehmberg, O., Bizer, C.: Matching html tables to dbpedia. In: Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics, pp. 1–6 (2015)

    Google Scholar 

  4. Bhagavatula, C.S., Noraset, T., Downey, D.: Methods for exploring and mining tables on wikipedia. In: Proceedings of the ACM SIGKDD Workshop on Interactive Data Exploration and Analytics, pp. 18–26 (2013)

    Google Scholar 

  5. Liu, Y., Bai, K., Mitra, P., et al.: Tableseer: automatic table metadata extraction and searching in digital libraries. In: Proceedings of the 7th ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 91–100 (2007)

    Google Scholar 

  6. Agassi, S., Ziv, U., Shulman, H.: Auto completion of relationships between objects in a data model. Google Patents (2004)

    Google Scholar 

  7. Gonzalez, H., Halevy, A., Jensen, C. S., et al.: Google fusion tables: data management, integration and collaboration in the cloud. In: Proceedings of the 1st ACM symposium on Cloud computing, pp. 175–180 (2010)

    Google Scholar 

  8. Pinto, D., Branstein, M., Coleman, R., et al.: Quasm: a system for question answering using semi-structured data. In: Proceedings of the 2nd ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 46–55 (2002)

    Google Scholar 

  9. Kim, S., Han, K., Kim, S. Y., et al.: Scientific table type classification in digital library. In: Proceedings of the 2012 ACM Symposium on Document Engineering, pp. 133–136 (2012)

    Google Scholar 

  10. Crestan, E.,Pantel, P.: Web-scale table census and classification. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, pp. 545–554 (2011)

    Google Scholar 

  11. Silberman, N., Ahlrich, K., Fergus, R., et al.: Association for the Advancement of Artificial Intelligence. October (2013)

    Google Scholar 

  12. Eberius, J., Braunschweig, K., Hentsch, M., et al.: Building the dresden web table corpus: a classification approach. In: 2015 IEEE/ACM 2nd International Symposium on Big Data Computing (BDC), pp. 41–50. IEEE (2015)

    Google Scholar 

  13. Cafarella, M.J., Halevy, A., Khoussainova, N.: Data integration for the relational web. Proc. VLDB Endowment 2(1), 1090–1101 (2009)

    Article  Google Scholar 

  14. Cafarella, M.J., Halevy, A., Wang, D.Z., et al.: Webtables: exploring the power of tables on the web. Proc. VLDB Endowment 1(1), 538–549 (2008)

    Article  Google Scholar 

  15. Wang, Y., Hu, J.: Detecting tables in html documents. In: Lopresti, D., Hu, J., Kashi, R. (eds.) DAS 2002. LNCS, vol. 2423, pp. 249–260. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45869-7_29

    Chapter  Google Scholar 

  16. Lautert, L.R., Scheidt, M.M., Dorneles, C.F.: Web table taxonomy and formalization. ACM SIGMOD Rec. 42(3), 28–33 (2013)

    Article  Google Scholar 

  17. Nishida, K., Sadamitsu, K., Higashinaka, R., et al.: Understanding the semantic structures of tables with a hybrid deep neural network architecture. In: Proceedings of the AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  18. Ghasemi-Gol, M.,Szekely, P.: Tabvec: table vectors for classification of web tables. arXiv preprint arXiv:1802.06290 (2018)

  19. Kanerva, P.: Hyperdimensional computing: an introduction to computing in distributed representation with high-dimensional random vectors. Cogn. Comput. 1, 139–159 (2009)

    Article  Google Scholar 

  20. Habibi, M., Starlinger, J., Leser, U.: DeepTable: a permutation invariant neural network for table orientation classification. Data Min. Knowl. Disc. 34(6), 1963–1983 (2020)

    Article  MathSciNet  Google Scholar 

  21. Bühler, B., Paulheim, H.: Web table classification based on visual features. In: Brambilla, M., Chbeir, R., Frasincar, F., Manolescu, I. (eds.) ICWE 2021. LNCS, vol. 12706, pp. 185–200. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-74296-6_15

    Chapter  Google Scholar 

  22. Wang, Y., Hu, J.: A machine learning based approach for table detection on the web. In: Proceedings of the 11th International Conference on World Wide Web, pp. 242–250 (2002)

    Google Scholar 

  23. Luo, X.: An approach for table classification in long financlal disclosures. J. Chin. Inf. Process. 37(5), 70–79 (2023)

    Google Scholar 

  24. Liu, F., Shareghi, E., Meng, Z., et al.: Self-alignment pretraining for biomedical entity representations. arXiv preprint arXiv:2010.11784 (2020)

  25. Yin, P., Neubig, G., Yih, W.-T., et al.: TaBERT: pretraining for joint understanding of textual and tabular data. arXiv preprint arXiv:2005.08314 (2020)

  26. Lee, J., Lee, Y., Kim, J., et al.: Set transformer: a framework for attention-based permutation-invariant neural networks. In: International Conference on Machine Learning, pp. 3744–3753. PMLR (2019)

    Google Scholar 

  27. Devlin, J., Chang, M.-W., Lee, K., et al.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  28. Zheng, S., Yang, M.: A new method of improving bert for text classification. In: Cui, Z., Pan, J., Zhang, S., Xiao, L., Yang, J. (eds.) IScIDE 2019, Part II. LNCS, vol. 11936, pp. 442–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36204-1_37

    Chapter  Google Scholar 

  29. Alsaaran, N., Alrabiah, M.: Classical Arabic named entity recognition using variant deep neural network architectures and BERT. IEEE Access 9, 91537–91547 (2021)

    Article  Google Scholar 

  30. Pennington, J., Socher, R.,Manning, C. D.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  31. Mikolov, T., Chen, K., Corrado, G., et al.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  32. Bai, S., Kolter, J. Z.,Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271 (2018)

  33. Tang, C., Zhao, Y., Wang, G., et al.: Sparse MLP for image recognition: is self-attention really necessary? In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 2344–2351 (2022)

    Google Scholar 

  34. Isberner, A.: Similarity search on tabular data.Doctoral dissertation, Diploma Thesis. Humboldt University of Berlin (2016)

    Google Scholar 

  35. Moen, S., Ananiadou, T.S.S.: Distributional semantics resources for biomedical text processing. Proc. LBM 39–44 (2013)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2022YFC3302300), Advanced Research Project (7090201050307), National 242 Information Security Program(2022A056, 2023A105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongxin Mi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jin, D., Mi, R., Song, T. (2024). Table Orientation Classification Model Based on BERT and TCSMN. In: Shi, Z., Torresen, J., Yang, S. (eds) Intelligent Information Processing XII. IIP 2024. IFIP Advances in Information and Communication Technology, vol 703. Springer, Cham. https://doi.org/10.1007/978-3-031-57808-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57808-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57807-6

  • Online ISBN: 978-3-031-57808-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics