Skip to main content

Advancing Multi-actor Graph Convolutions for Skeleton-Based Action Recognition

  • Conference paper
  • First Online:
Intelligent Technologies for Interactive Entertainment (INTETAIN 2023)

Abstract

Human skeleton motion recognition, notable for its lightweight, interference-resistant, and resource-saving properties, plays a crucial role in human motion recognition and has found widespread applications. The common approach to capture motion features from human skeleton videos involves extracting skeleton features temporally or spatially using Graph Convolution Networks (GCN) or their improved variants. Nevertheless, existing extraction methods encounter two primary limitations: variability in the number of actors involved in an action and disconnected subgraphs representing multiple actors’ actions, resulting in a loss of inter-subgraph features. To overcome these challenges, we propose Human Mirror and Human Link strategies, which replicate diverse human data to fill and interlink multiple subgraphs. Empirically, our proposed methods applied to the NTU RGB+D 120 dataset significantly enhanced the performance of the base model MSG3D, demonstrating the effectiveness of our approach in handling multi-actor scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, Y., et al.: TEA: temporal excitation and aggregation for action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 909–918 (2020)

    Google Scholar 

  2. Fanello, S.R., et al.: Keep it simple and sparse: real-time action recognition. J. Mach. Learn. Res. 14, 2617–2640 (2013)

    Google Scholar 

  3. Tran, D., et al.: A closer look at spatiotemporal convolutions for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6450–6459 (2018)

    Google Scholar 

  4. Saggese, A., et al.: Learning skeleton representations for human action recognition. Pattern Recogn. Lett. 118, 23–31 (2019)

    Article  Google Scholar 

  5. Du, Y., Wang, W., Wang, L.: Hierarchical recurrent neural network for skeleton based action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1110–1118 (2015)

    Google Scholar 

  6. Ke, Q., et al.: A new representation of skeleton sequences for 3d action recognition. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3288–3297 (2017)

    Google Scholar 

  7. Cheng, K., et al.: Extremely lightweight skeleton-based action recognition with ShiftGCN++. IEEE Trans. Image Process. 30, 7333–7348 (2021)

    Article  Google Scholar 

  8. Liu, J., et al.: NTU RGB+ D 120: a large-scale benchmark for 3d human activity understanding. IEEE Tran. Pattern Anal. Mach. Intell. 42(10), 2684–2701 (2019)

    Article  Google Scholar 

  9. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  10. Cheng, K., et al.: Decoupling GCN with DropGraph module for skeleton-based action recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part XXIV. LNCS, vol. 12369, pp. 536–553. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58586-0_32

    Chapter  Google Scholar 

  11. Zhang, P., et al.: Semantics-guided neural networks for efficient skeleton based human action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1112–1121 (2020)

    Google Scholar 

  12. Shi, L., et al.: Skeleton-based action recognition with directed graph neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7912–7921 (2019)

    Google Scholar 

  13. Vemulapalli, R., Arrate, F., Chellappa, R.: Human action recognition by representing 3d skeletons as points in a lie group. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 588–595 (2014)

    Google Scholar 

  14. Wang, L., Koniusz, P., Huynh, D.: Hallucinating IDT descriptors and I3D optical flow features for action recognition with CNNs. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019). https://doi.org/10.1109/ICCV.2019.00879

  15. Liu, M., Liu, H., Chen, C.: Enhanced skeleton visualization for view invariant human action recognition. Pattern Recogn. 68, 346–362 (2017)

    Article  Google Scholar 

  16. Li, M., et al.: Actional-structural graph convolutional networks for skeleton-based action recognition. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3595–3603 (2019)

    Google Scholar 

  17. Si, C., et al.: An attention enhanced graph convolutional LSTM network for skeleton-based action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1227–1236 (2019)

    Google Scholar 

  18. Shi, L., et al.: Two-stream adaptive graph convolutional networks for skeleton-based action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12026–12035 (2019)

    Google Scholar 

  19. Liu, Z., et al.: Disentangling and unifying graph convolutions for skeleton based action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 143–152 (2020)

    Google Scholar 

  20. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  21. Cortes, C., et al.: Advances in neural information processing systems 28. In: NIPS 2015 (2015)

    Google Scholar 

  22. Bruna, J., et al.: Spectral networks and locally connected networks on graphs. In: arXiv preprint arXiv:1312.6203 (2013)

  23. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  24. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: arXiv preprint arXiv:1609.02907 (2016)

  25. Hammond, D.K., Vandergheynst, P., Gribonval, R.: Wavelets on graphs via spectral graph theory. Appl. Comput. Harmon. Anal. 30(2), 129–150 (2011)

    Article  MathSciNet  Google Scholar 

  26. Wan, S., et al.: Multiscale dynamic graph convolutional network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 58(5), 3162–3177 (2019)

    Article  Google Scholar 

  27. Dang, L., et al.: MSR-GCN: multi-scale residual graph convolution networks for human motion prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11467–11476 (2021)

    Google Scholar 

  28. Zhang, Y., et al.: STST: spatial-temporal specialized transformer for skeleton-based action recognition. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 3229–3237 (2021)

    Google Scholar 

  29. Veličković, P., et al.: Graph attention networks. In: arXiv preprint arXiv:1710.10903 (2017)

  30. Shahroudy, A., et al.: NTU RGB+ D: a large scale dataset for 3d human activity analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1010–1019 (2016)

    Google Scholar 

  31. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: arXiv preprint arXiv:1412.6980 (2014)

  32. Chen, Y., et al.: Channel-wise topology refinement graph convolution for skeleton-based action recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13359–13368 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiqun Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Qin, Z., Liu, Y., Gedeon, T., Song, W. (2024). Advancing Multi-actor Graph Convolutions for Skeleton-Based Action Recognition. In: Clayton, M., Passacantando, M., Sanguineti, M. (eds) Intelligent Technologies for Interactive Entertainment. INTETAIN 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 560. Springer, Cham. https://doi.org/10.1007/978-3-031-55722-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-55722-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-55721-7

  • Online ISBN: 978-3-031-55722-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics