Skip to main content

Efficient Abductive Learning of Microbial Interactions Using Meta Inverse Entailment

  • Conference paper
  • First Online:
Inductive Logic Programming (ILP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13779))

Included in the following conference series:

  • 46 Accesses

Abstract

Abductive reasoning plays an essential part in day-to-day problem-solving. It has been considered a powerful mechanism for hypothetical reasoning in the presence of incomplete knowledge; a form of “common sense” reasoning. In machine learning, abduction is viewed as a conceptual method in which data and the bond that jointly brings the different types of inference. The traditional Mode-Directed Inverse Entailment (MDIE) based systems such as Progol and Aleph for the abduction were not data-efficient since their execution time with the large dataset was too long. We present a new abductive learning procedure using Meta Inverse Entailment (MIE). MIE is similar to Mode-Directed Inverse Entailment (MDIE) but does not require user-defined mode declarations. In this paper, we use an implementation of MIE in Python called PyGol. We evaluate and compare this approach to reveal the microbial interactions in the ecosystem with state-of-art-of methods for abduction, such as Progol and Aleph. Our results show that PyGol has comparable predictive accuracies but is significantly faster than Progol and Aleph.

ILP 2022, 31st International Conference on Inductive Logic Programming, Cumberland Lodge, Windsor, UK.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available from https://github.com/PyGol.

  2. 2.

    Available from https://github.com/danyvarghese/IJCLR22-Abduction.

References

  1. Adé, H., Malfait, B., De Raedt, L.: RUTH: an ILP theory revision system. In: Raś, Z.W., Zemankova, M. (eds.) ISMIS 1994. LNCS, vol. 869, pp. 336–345. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58495-1_34

    Chapter  Google Scholar 

  2. Barroso-Bergada, D., Tamaddoni-Nezhad, A., Muggleton, S.H., Vacher, C., Galic, N., Bohan, D.A.: Machine learning of microbial interactions using abductive ILP and hypothesis frequency/compression estimation. In: Katzouris, N., Artikis, A. (eds.) Inductive Logic Programming, ILP 2021. LNCS, vol. 13191, pp. 26–40. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97454-1_3

  3. Cropper, A.: Efficiently learning efficient programs. Ph.D. thesis. Imperial College London, UK (2017)

    Google Scholar 

  4. De Raedt, L., Bruynooghe, M.: Interactive concept-learning and constructive induction by analogy. Mach. Learn. 8(2), 107–150 (1992)

    Article  Google Scholar 

  5. Evans, R., Grefenstette, E.: Learning explanatory rules from noisy data. J. Artif. Int. Res. 61(1), 1–64 (2018)

    MathSciNet  Google Scholar 

  6. França, M.V.M., Zaverucha, G., Garcez, A.: Fast relational learning using bottom clause propositionalization with artificial neural networks. Mach. Learn. 94(1), 81–104 (2014). https://doi.org/10.1007/s10994-013-5392-1. https://openaccess.city.ac.uk/id/eprint/3057/

  7. Kakas, A., Tamaddoni, N.A., Muggleton, S., Chaleil, R.: Application of abductive ILP to learning metabolic network inhibition from temporal data. Mach. Learn. 64, 209–230 (2006). https://doi.org/10.1007/s10994-006-8988-x

    Article  Google Scholar 

  8. Kakas, A.C., Kowalski, R.A., Toni., F.: Abduction in logic programming. J. Log. Comput. 2, 719–770 (1993)

    Google Scholar 

  9. Michalski, R.S.: A theory and methodology of inductive learning. Artif. Intell. 20(2), 111–161 (1983)

    Article  MathSciNet  Google Scholar 

  10. Michalski, R.S.: Inferential theory of learning as a conceptual basis for multistrategy learning. Mach. Learn. 11(2–3), 111–151 (1993)

    Google Scholar 

  11. Moyle, S.: Using theory completion to learn a robot navigation control program. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 182–197. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36468-4_12

    Chapter  Google Scholar 

  12. Muggleton, S.: Inverse entailment and Progol. N. Gener. Comput. 13, 245–286 (1995)

    Article  Google Scholar 

  13. Muggleton, S., Lin, D., Tamaddoni-Nezhad, A.: Meta-interpretive learning of higher-order dyadic datalog: predicate invention revisited. Mach. Learn. 100(1), 49–73 (2015). https://doi.org/10.1007/s10994-014-5471-y

    Article  MathSciNet  Google Scholar 

  14. Muggleton, S.: Learning from positive data. In: Muggleton, S. (ed.) ILP 1996. LNCS, vol. 1314, pp. 358–376. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63494-0_65

    Chapter  Google Scholar 

  15. Muggleton, S.H., Bryant, C.H.: Theory completion using inverse entailment. In: Cussens, J., Frisch, A. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 130–146. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44960-4_8

    Chapter  Google Scholar 

  16. Muggleton, S., de Raedt, L.: Inductive logic programming: Theory and methods. J. Log. Program. 19–20, 629–679 (1994). Special Issue: Ten Years of Logic Programming

    Google Scholar 

  17. Nienhuys-Cheng, S.-H., de Wolf, R.: Foundations of Inductive Logic Programming. LNCS, vol. 1228. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62927-0

    Book  Google Scholar 

  18. Ourston, D., Mooney, R.J.: Theory refinement combining analytical and empirical methods. Artif. Intell. 66(2), 273–309 (1994)

    Article  MathSciNet  Google Scholar 

  19. Ray, O., Broda, K., Russo, A.: Hybrid Abductive inductive learning: a generalisation of Progol. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 311–328. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39917-9_21

    Chapter  Google Scholar 

  20. Srinivasan, A.: A learning engine for proposing hypotheses (Aleph) (2001). https://www.cs.ox.ac.uk/activities/programinduction/Aleph/aleph.html

  21. Tamaddoni-Nezhad, A., Lin, D., Watanabe, H., Chen, J., Muggleton, S.: Machine Learning of Biological Networks Using Abductive ILP, pp. 363–401. Wiley, Hoboken (2014). https://doi.org/10.1002/9781119005223.ch10

  22. Tamaddoni-Nezhad, A., Bohan, D., Raybould, A., Muggleton, S.: Towards machine learning of predictive models from ecological data. In: Davis, J., Ramon, J. (eds.) ILP 2014. LNCS (LNAI), vol. 9046, pp. 154–167. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23708-4_11

    Chapter  Google Scholar 

  23. Varghese, D., Bauer, R., Baxter-Beard, D., Muggleton, S., Tamaddoni-Nezhad, A.: Human-like rule learning from images using one-shot hypothesis derivation. In: Katzouris, N., Artikis, A. (eds.) Inductive Logic Programming, ILP 2021. LNCS, vol. 13191, pp. pp 234–250. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97454-1_17

  24. Varghese, D., Tamaddoni-Nezhad, A.: One-shot rule learning for challenging character recognition. In: Proceedings of the 14th International Rule Challenge, August 2020, Oslo, Norway, vol. 2644, pp. 10–27 (2020)

    Google Scholar 

  25. Varghese, D., Tamaddoni-Nezhad, A.: Pyilp (2022). https://github.com/danyvarghese/PyILP/

  26. Yamamoto, A.: Revising the logical foundations of inductive logic programming systems with ground reduced programs. New Gener. Comput. 17, 119–127 (1998). https://cir.nii.ac.jp/crid/1571417125491386240

  27. Yamamoto, A.: Which hypotheses can be found with inverse entailment? In: Lavrač, N., Džeroski, S. (eds.) ILP 1997. LNCS, vol. 1297, pp. 296–308. Springer, Heidelberg (1997). https://doi.org/10.1007/3540635149_58

    Chapter  Google Scholar 

  28. Yamamoto, A.: Using abduction for induction based on bottom generalization. In: Flach, P.A., Kakas, A.C. (eds.) Abduction and Induction. Applied Logic Series, vol. 18, pp. 267–280. Springer, Dordrecht (2000). https://doi.org/10.1007/978-94-017-0606-3_17

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dany Varghese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Varghese, D., Barroso-Bergada, D., Bohan, D.A., Tamaddoni-Nezhad, A. (2024). Efficient Abductive Learning of Microbial Interactions Using Meta Inverse Entailment. In: Muggleton, S.H., Tamaddoni-Nezhad, A. (eds) Inductive Logic Programming. ILP 2022. Lecture Notes in Computer Science(), vol 13779. Springer, Cham. https://doi.org/10.1007/978-3-031-55630-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-55630-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-55629-6

  • Online ISBN: 978-3-031-55630-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics