Skip to main content

Biomechanical Modeling of Cesarean Section Scars and Scar Defects

  • Conference paper
  • First Online:
Computer Methods in Biomechanics and Biomedical Engineering II (CMBBE 2023)

Abstract

Uterine rupture is an intrinsically biomechanical process associated with high maternal and fetal mortality. A previous Cesarean section (C-section) is the main risk factor for uterine rupture in a subsequent pregnancy due to tissue failure at the scar region. Finite element modeling of the uterus and scar tissue presents a promising method to further understand and predict uterine ruptures. Using patient dimensions of an at-term uterus, a C-section scar was modeled with an applied intrauterine pressure to study how scars affect uterine stress. The scar positioning and uterine thickness were varied, and a defect was incorporated into the scar region. The modeled stress distributions confirmed clinical observations as the increased regions of stress due to scar positioning, thinning of the uterine walls, and the presence of a defect are consistent with clinical observations of features that increase the risk of uterine rupture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Betrán, A.P., Ye, J., Moller, A.B., Zhang, J., Gülmezoglu, A.M., Torloni, M.R.: The increasing trend in caesarean section rates: global, regional and national estimates: 1990–2014. PLoS ONE 11(2), e0148343 (2016). https://doi.org/10.1371/journal.pone.0148343

    Article  Google Scholar 

  2. Betrán, A.P., Ye, J., Moller, A.B., Souza, J.P., Zhang, J.: Trends and projections of caesarean section rates: global and regional estimates. BMJ Glob. Health 6(6), e005671 (2021). https://doi.org/10.1136/bmjgh-2021-005671

    Article  Google Scholar 

  3. Hoxha, I., Fink, G.: Caesarean sections and health financing: a global analysis. BMJ Open 11(5), e044383 (2021). https://doi.org/10.1136/bmjopen-2020-044383

    Article  Google Scholar 

  4. Sobhy, S., et al.: Maternal and perinatal mortality and complications associated with caesarean section in low-income and middle-income countries: a systematic review and meta-analysis. The Lancet 393(10184), 1973–1982 (2019). https://doi.org/10.1136/bmjopen-2020-044383

  5. Betrán, A.P., et al.: What is the optimal rate of caesarean section at population level? A systematic review of ecologic studies. Reproduct. Health 12(1), 1–10 (2015). https://doi.org/10.1186/s12978-015-0043-6

  6. Antila-Långsjö, R.M., Mäenpää, J.U., Huhtala, H.S., Tomás, E.I., Staff, S.M.: Cesarean scar defect: a prospective study on risk factors. Am. J. Obstet. Gynecol. 219(5), 458-e1 (2018). https://doi.org/10.1016/j.ajog.2018.09.004

    Article  Google Scholar 

  7. Zhu, Z., Li, H., Zhang, J.: Uterine dehiscence in pregnant with previous caesarean delivery. Ann. Med. 53(1), 1266–1270 (2021). https://doi.org/10.1080/07853890.2021.1959049

    Article  Google Scholar 

  8. Motomura, K., et al.: Incidence and outcomes of uterine rupture among women with prior caesarean section: WHO Multicountry Survey on Maternal and Newborn Health. Sci. Rep. 7(1), 44093 (2017). https://doi.org/10.1038/srep44093

  9. Dow, M., Wax, J.R., Pinette, M.G., Blackstone, J., Cartin, A.: Third-trimester uterine rupture without previous cesarean: a case series and review of the literature. Am. J. Perinatol. 26(10), 739–744 (2009). https://doi.org/10.1055/s-0029-1223287

    Article  Google Scholar 

  10. Justus Hofmeyr, G., Say, L., Metin Gülmezoglu, A.: Systematic review: WHO systematic review of maternal mortality and morbidity: the prevalence of uterine rupture. BJOG: An Int. J. Obstetr. Gynaecol. 112(9), 1221–1228 (2005). https://doi.org/10.1111/j.1471-0528.2005.00725.x

  11. Landon, M.B., et al.: Maternal and perinatal outcomes associated with a trial of labor after prior cesarean delivery. New Engl. J. Med. 351(25), 2581–2589 (2004). https://doi.org/10.1016/j.jmwh.2005.06.001

  12. Rozenberg, P., et al.: Evaluation of the usefulness of ultrasound measurement of the lower uterine segment before delivery of women with a prior cesarean delivery: a randomized trial. Am. J. Obstetr. Gynecol. 226(2), 253–e1 (2022). https://doi.org/10.1016/j.ajog.2021.08.005

  13. Bujold, E., Jastrow, N., Simoneau, J., Brunet, S., Gauthier, R.J.: Prediction of complete uterine rupture by sonographic evaluation of the lower uterine segment. Am. J. Obstetr. Gynecol. 201(3), 320-e1 (2009). https://doi.org/10.1016/j.ajog.2009.06.014

    Article  Google Scholar 

  14. Aboughalia, H., Basavalingu, D., Revzin, M.V., Sienas, L.E., Katz, D.S., Moshiri, M.: Imaging evaluation of uterine perforation and rupture. Abdom. Radiol. 46(10), 4946–4966 (2021). https://doi.org/10.1007/s00261-021-03171-z

    Article  Google Scholar 

  15. Louwagie, E.M., et al.: Longitudinal ultrasonic dimensions and parametric solid models of the gravid uterus and cervix. PloS One 16(1), e0242118 (2021). https://doi.org/10.1371/journal.pone.0242118

  16. Rajasekharan, D., Feder, A.D., Louwagie, E.M., Myers, K.M.: Summer 2020 Undergrad Project-Late Pregnancy Uterus Model (2020). https://doi.org/10.7916/d8-p164-vg61

  17. Joyce, E.M., et al.: In-vivo stretch of term human fetal membranes. Placenta 38, 57–66 (2016). https://doi.org/10.1016/j.placenta.2015.12.011

  18. Kan, A.: Classical cesarean section. Surg. J. 6(S02), S98–S103 (2020). https://doi.org/10.1055/s-0039-3402072

  19. Naji, O., et al.: Standardized approach for imaging and measuring Cesarean section scars using ultrasonography. Ultras. Obstetr. Gynecol. 39(3), 252–259 (2012). https://doi.org/10.1002/uog.10077

  20. Savukyne, E., Machtejeviene, E., Paskauskas, S., Ramoniene, G., Nadisauskiene, R.J.: Transvaginal sonographic evaluation of cesarean section scar niche in pregnancy: a prospective longitudinal study. Medicina 57(10), 1091 (2021). https://doi.org/10.3390/medicina57101091

    Article  Google Scholar 

  21. Maas, S.A., Ellis, B.J., Ateshian, G.A., Weiss, J.A.: FEBio: finite elements for biomechanics. J. Biomech. Eng. (2012). https://doi.org/10.1115/1.4005694

    Article  Google Scholar 

  22. Maas, S.A., Herron, M., Weiss, J.A., Ateshian, G.A.: Subsection 5.2.3 of Febio theory manual: neo-hookean hyperelasticity (2023). https://help.febio.org/FEBioTheory/FEBiotm3-4-Subsection-5.2.3. Accessed 20 June 2023

  23. Wheeler, M.L., Oyen, M.L.: Premature rupture of membranes and severe weather systems. Front. Physiol. 11, 524 (2020). https://doi.org/10.3389/fphys.2020.00524

    Article  Google Scholar 

  24. Maas, S. A., Herron, M., Weiss, J.A., Ateshian, G.A.: Subsection 4.6.3.4 of FEBio Theory Manual: Von Mises Stress (2023). https://help.febio.org/docs/FEBioUser-3-6/UM36-4.6.3.4. Accessed 20 June 2023

  25. Myers, K.M., et al.: A continuous fiber distribution material model for human cervical tissue. J. Biomech. 48(9), 1533–1540 (2015). https://doi.org/10.1016/j.jbiomech.2015.02.060

  26. Weiss, S., et al.: Three-dimensional fiber architecture of the nonpregnant human uterus determined ex vivo using magnetic resonance diffusion tensor imaging. Anatom. Record Part A 288(1), 84–90 (2006). https://doi.org/10.1002/ar.a.20274

  27. Mathew Steiner, S.S., Roy, S., Sen, C.K.: Collagen in wound healing. Bioengineering 8(5), 63 (2021). https://doi.org/10.3390/bioengineering8050063

    Article  Google Scholar 

  28. Cisloiu, R., Lovell, M., Wang, J.: A stabilized mixed formulation for finite strain deformation for low-order tetrahedral solid elements. Finite Elem. Anal. Des. 44(8), 472–482 (2008). https://doi.org/10.1016/j.finel.2008.01.003

    Article  Google Scholar 

  29. Fodera, D.M., et al.: Material Properties of Nonpregnant and Pregnant Human Uterine Layers. bioRxiv, 2023–08 (2023). https://doi.org/10.1101/2023.08.07.551726

  30. Long, R., Hui, C.Y., Gong, J.P., Bouchbinder, E.: The fracture of highly deformable soft materials: a tale of two length scales. Annu. Rev. Condens. Matter Phys. 12, 71–94 (2021). https://doi.org/10.1146/annurev-conmatphys-042020-023937

    Article  Google Scholar 

  31. Spagnoli, A., Brighenti, R., Cosma, M.P., Terzano, M.: Fracture in soft elastic materials: Continuum description, molecular aspects and applications. Adv. Appl. Mech. 55, 255–307 (2022). https://doi.org/10.1016/bs.aams.2021.07.001

    Article  Google Scholar 

  32. Korenczuk, C.E., et al.: Isotropic failure criteria are not appropriate for anisotropic fibrous biological tissues. J. Biomech. Eng. 139(7), 071008 (2017). https://doi.org/10.1115/1.4036316

  33. Viceconti, M., Pappalardo, F., Rodriguez, B., Horner, M., Bischoff, J., Tshinanu, F.M.: In silico trials: Verification, validation and uncertainty quantification of predictive models used in the regulatory evaluation of biomedical products. Methods 185, 120–127 (2021). https://doi.org/10.1016/j.ymeth.2020.01.011

    Article  Google Scholar 

  34. Oyen, M.L.: Engineering is pregnant with possibilities. Sci. Adv. 9(4), eadg6048 (2023). https://doi.org/10.1126/sciadv.adg6048

Download references

Acknowledgements

The authors acknowledge the NIH T32 Postdoctoral Training Grant in Regenerative Medicine (T32 EB028092).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrienne K. Scott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Scott, A.K., Louwagie, E.M., Myers, K.M., Oyen, M.L. (2024). Biomechanical Modeling of Cesarean Section Scars and Scar Defects. In: Skalli, W., Laporte, S., Benoit, A. (eds) Computer Methods in Biomechanics and Biomedical Engineering II. CMBBE 2023. Lecture Notes in Computational Vision and Biomechanics, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-031-55315-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-55315-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-55314-1

  • Online ISBN: 978-3-031-55315-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics