Skip to main content

Large-Scale Finite Element Modeling of Pre-stress in Articular Cartilage

  • Conference paper
  • First Online:
Computer Methods in Biomechanics and Biomedical Engineering II (CMBBE 2023)

Abstract

Finite element (FE) methods and multiphasic equations are commonly used to model articular cartilage (AC). This tissue has a fixed negative charge that leads to osmotic pressure in its structure, causing pre-stress. A challenge in FE modeling of AC is to start the simulation with the correct in vivo pre-stressed state of the tissue, which is traditionally handled by custom optimizers, the so-called pre-stressing algorithm (PSA). These algorithms, which have been successfully implemented in small-scale models, detect either the geometrical stress-free state, constitutive stress-free state, or both. Therefore, this work aims to extend it to a larger-scale AC model in a human tibiofemoral joint, developed using depth-dependent and multiphasic equations of AC. We employed a unified optimizer, rather than sequential optimizers, to reduce the number of algorithmic iterations. Also, fibrillar orientations and other microstructural properties of the AC substructures are approximated by defining the approximate normalized depth. The pre-stressed state is calculated in around six hours, revealing the noted depth-dependent stresses. To facilitate future research, the PSA is open-sourced at https://github.com/shayansss/psa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buschmann, M., Grodzinsky, A.: A molecular model of proteoglycan-associated electrostatic forces in cartilage mechanics. J. Biomech. Eng. 117(5), 179–192 (1995). https://doi.org/10.1115/1.279600

    Article  Google Scholar 

  2. Erdemir, A.: Open knee: open source modeling and simulation in knee biomechanics. J. Knee Surg. 29(2), 107–116 (2016). https://doi.org/10.1055/s-0035-1564600

    Article  Google Scholar 

  3. Lai, W.M., Hou, J.S., Mow, V.C.: A triphasic theory for the swelling and deformation behaviors of articular cartilage. J. Biomech. Eng. 113(3), 245–258 (1991). https://doi.org/10.1115/1.2894880

    Article  Google Scholar 

  4. Lei, F., Szeri, A.Z.: The influence of fibril organization on the mechanical behaviour of articular cartilage. Proc. R. Soc. A: Math. Phys. Eng. 462, 3301–3322 (2006). https://doi.org/10.1098/rspa.2006.1732

    Article  MathSciNet  Google Scholar 

  5. Maneewongvatana, S., Mount, D.: Analysis of approximate nearest neighbor searching with clustered point sets. In: Goldwasser, M.H., Johnson, D.S., McGeoch, C.C. (eds.) Data Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementation Challenges, Proceedings of a DIMACS Workshop, USA, 1999, vol. 59, pp. 105–123 (1999). https://doi.org/10.48550/arXiv.cs/9901013

  6. Mononen, M.E., et al.: Effect of superficial collagen patterns and fibrillation of femoral articular cartilage on knee joint mechanics - A 3D finite element analysis. J. Biomech. 45(3), 579–587 (2012). https://doi.org/10.1016/j.jbiomech.2011.11.003

    Article  Google Scholar 

  7. Mow, V.C., Kuei, S.C., Lai, W.M., Armstrong, C.G.: Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J. Biomech. Eng. 102(1), 73–84 (1980). https://doi.org/10.1115/1.3138202

    Article  Google Scholar 

  8. Sajjadinia, S.S., Haghpanahi, M., Razi, M.: Computational simulation of the multiphasic degeneration of the bone-cartilage unit during osteoarthritis via indentation and unconfined compression tests. Proc. Inst. Mech. Eng. H J. Eng. Med. 233, 871–882 (2019). https://doi.org/10.1177/0954411919854011

    Article  Google Scholar 

  9. Sajjadinia, S.S., Carpentieri, B., Holzapfel, G.A.: A backward pre-stressing algorithm for efficient finite element implementation of in vivo material and geometrical parameters into fibril-reinforced mixture models of articular cartilage. J. Mech. Behav. Biomed. Mater. 114, 104203 (2021). https://doi.org/10.1016/j.jmbbm.2020.104203

    Article  Google Scholar 

  10. Sajjadinia, S.S., Haghpanahi, M.: A parametric study on the mechanical role of fibrillar rotations in an articular cartilage finite element model. Sci. Iran. 28(2), 830–836 (2021). https://doi.org/10.1007/s10237-006-0044-z

    Article  Google Scholar 

  11. Sajjadinia, S.S., Carpentieri, B., Shriram, D., Holzapfel, G.A.: Multi-fidelity surrogate modeling through hybrid machine learning for biomechanical and finite element analysis of soft tissues. Comput. Biol. Med. 148, 105699 (2022). https://doi.org/10.1016/j.compbiomed.2022.105699

    Article  Google Scholar 

  12. Setton, L.A., Gu, W., Lai, W.M., Mow, V.C.: Predictions of the swelling-induced pre-stress in articular cartilage. In: Selvadurai, A.P.S. (ed.) Mechanics of Poroelastic Media, vol. 35, pp. 299–320. Springer, Netherlands (1996). https://doi.org/10.1007/978-94-015-8698-6_17

  13. Stender, M.E., et al.: Integrating qPLM and biomechanical test data with an anisotropic fiber distribution model and predictions of TGF-\(\rm \beta \)1 and IGF-1 regulation of articular cartilage fiber modulus. Biomech. Model. Mechanobiol. 12(6), 1073–1088 (2013). https://doi.org/10.1007/s10237-012-0463-y

    Article  Google Scholar 

  14. Wang, X., Eriksson, T.S.E., Ricken, T., Pierce, D.M.: On incorporating osmotic prestretch/prestress in image-driven finite element simulations of cartilage. J. Mech. Behav. Biomed. Mater. 86, 409–422 (2018). https://doi.org/10.1016/j.jmbbm.2018.06.014

    Article  Google Scholar 

  15. Wilson, W., van Donkelaar, C.C., van Rietbergen, B., Ito, K., Huiskes, R.: Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study. J. Biomech. 37(3), 357–366 (2004). https://doi.org/10.1016/S0021-9290(03)00267-7

    Article  Google Scholar 

  16. Wilson, W., Huyghe, J.M., van Donkelaar, C.C.: Depth-dependent compressive equilibrium properties of articular cartilage explained by its composition. Biomech. Model. Mechanobiol. 6(1), 43–53 (2007). https://doi.org/10.1007/s10237-006-0044-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Shayan Sajjadinia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sajjadinia, S.S., Carpentieri, B., Holzapfel, G.A. (2024). Large-Scale Finite Element Modeling of Pre-stress in Articular Cartilage. In: Skalli, W., Laporte, S., Benoit, A. (eds) Computer Methods in Biomechanics and Biomedical Engineering II. CMBBE 2023. Lecture Notes in Computational Vision and Biomechanics, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-031-55315-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-55315-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-55314-1

  • Online ISBN: 978-3-031-55315-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics