Skip to main content

An Overview of Simulation-Based Multi-objective Evolutionary Algorithms

  • Conference paper
  • First Online:
International Conference on Advanced Intelligent Systems for Sustainable Development (AI2SD'2023) (AI2SD 2023)

Abstract

This overview is a recent literature on simulation-based multi-objective evolutionary algorithms (SMOEAs) capable of handling stochastic multiple objective functions. Special attention is given to stochastic multi-objective problems as well as to combinations of multi-objective evolutionary algorithms with simulation techniques. Then we illustrate the principale working of cooperation between Simulation and MOEAs, and discuss their application scope. Finally, it highlights recent important trends and closely related research fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A copula is a function which joins or couples a multivariate distribution function to its one-dimensional marginal distribution functions.

  2. 2.

    Is a stochastic simulation used for sparse continuous data and is a Monte Carlo method for generating equiprobable realizations of a continuous property which reproduce its frequency distribution and spatial correlation function.

  3. 3.

    Is a variogram-based categorical simulation technique and is a commonly used method for discrete variable simulation.

References

  1. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Google Scholar 

  2. Emmerich, M., Andre, D.H.: A tutorial on multiobjective optimization: fundamentals and evolutionary methods. Nat. Comput. 17, 585-609 (2018)

    Google Scholar 

  3. Coelho, R.F.: Probabilistic dominance in multiobjective reliability-based optimization: theory and implementation. IEEE Trans. Evolution. Comput. 19(2), 214–224 (2015)

    Google Scholar 

  4. Rubinstein, R.Y.: Simulation and the Monte Carlo Method. Wiley, New York (1981)

    Google Scholar 

  5. Medaglia, A.L., Graves, S.B., Ringuest, J.L.: A multiobjective evolutionary approach for linearly constrained project selection under uncertainty. Eur. J. Oper. Res. 179(3), 869–894 (2007)

    Article  Google Scholar 

  6. Amodeo, L., Prins, C., Sánchez, D.R.: Comparison of metaheuristic approaches for multi-objective simulation-based optimization in supply chain inventory management. In: Giacobini, M., et al. (eds.) Applications of Evolutionary Computing, pp. 798–807. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01129-0_90

  7. Chen, A., Subprasom, K., Ji, Z.: A simulation-based multi-objective genetic algorithm (SMOGA) procedure for BOT network design problem. Optim. Eng. 7, 225–247 (2006)

    Article  MathSciNet  Google Scholar 

  8. Amelian, S.S., Sajadi, S.M., Navabakhsh, M., Esmaelian, M.: Multi-objective optimization for stochastic failure prone job shop scheduling problem via hybrid of NSGA-II and simulation method. Expert Syst. 39(2), e12455 (2019)

    Google Scholar 

  9. Yangang, Y., Wu, J., Luo, Q., Zhang, T., Wu, J., Wang, J.: Effects of stochastic simulations on multiobjective optimization of groundwater remediation design under uncertainty. J. Hydrol. Eng. 22, 04017015 (2017)

    Google Scholar 

  10. Fu, Y., Tian, G., Fathollahi-Fard, A.M., Ahmadi, A., Zhang, C.: Stochastic multi-objective modelling and optimization of an energy-conscious distributed permutation flow shop scheduling problem with the total tardiness constraint. J. Clean. Prod. 226, 515–525 (2019)

    Article  Google Scholar 

  11. Lee, L.H., et al.: Multi-objective simulation-based evolutionary algorithm for an aircraft spare parts allocation problem. Eur. J. Oper. Res. 189, 476–491 (2008)

    Article  Google Scholar 

  12. Ding, H., Benyoucef, L., Xie, X.: Stochastic multi-objective production-distribution network design using simulation-based optimization. Int. J. Prod. Res. 47, 479–505 (2009)

    Article  Google Scholar 

  13. Feng, W., Zhouyang, L., Kong, N., Wan, H.: A multi-objective stochastic genetic algorithm for the pareto-optimal prioritization scheme design of real-time healthcare resource allocation. Oper. Res. Health Care 15, 32–42 (2017)

    Google Scholar 

  14. Salehi, Z., Gholaminezhad, I.: Multi-objective modeling, uncertainty analysis, and optimization of reversible solid oxide cells. Int. J. Energy Environ. Eng. 9, 295–304 (2018)

    Article  Google Scholar 

  15. Gonzalez-Neira, E.M., Montoya-Torres, J.R.: A simheuristic for bi-objective stochastic permutation flow shop scheduling problem. J. Project Manag. (2019)

    Google Scholar 

  16. Rabbani, M., Heidari, R., Yazdanparast, R.: A stochastic multi-period industrial hazardous waste location-routing problem: integrating NSGA-II and Monte Carlo simulation. Eur. J. Oper. Res. 272(3), 945–961 (2019)

    Google Scholar 

  17. Ding, H., Benyoucef, L., Xie, X.: A simulation-based multi-objective genetic algorithm approach for networked enterprises optimization. Eng. Appl. Artif. Intell. 19, 609–623 (2006)

    Article  Google Scholar 

  18. Lucidi, S., et al.: A simulation-based multiobjective optimization approach for health care service management. IEEE Trans. Automat. Sci. Eng. 13, 1480-1491 (2016)

    Google Scholar 

  19. Lucidi, S., Maurici, M., Paulon, L., Rinaldi, F., Roma, M.: A simulation-based multiobjective optimization approach for health care service management. IEEE Trans. Autom. Sci. Eng. 13, 1480–1491 (2016)

    Google Scholar 

  20. Chen, A., Kim, J., Lee, S., Kim, Y.: Stochastic multi-objective models for network design problem: Exp. Syst. Appl. 37, 1608–1619 (2010)

    Google Scholar 

  21. Neto, P., Ramalho, A., Filho, G., Vila, E.: A simulation-based evolutionary multiobjective approach to manufacturing cell formation. Comput. Indust. Eng. 59(1), 64–74 (2010)

    Google Scholar 

  22. Kiesling, E., Ekelhart, A., Grill, B., Strauss, C., Stummer, C.: Selecting security control portfolios: a multi-objective simulation-optimization approach. EURO J. Decision Process. 4, 85–117 (2016)

    Google Scholar 

  23. Yazdi, J., Lee, E. and Kim, J.: Stochastic multiobjective optimization model for urban drainage network rehabilitation. J. Water Resour. Plan. Manag. 141, 04014091 (2015)

    Google Scholar 

  24. Marquez-Calvo, O., Solomatine, D.P.: Approach to robust multi-objective optimization and probabilistic analysis: the ROPAR algorithm. J. Hydroinf. 21, 3 (2019)

    Article  Google Scholar 

  25. Olalotiti, L.F., Datta-Gupta, A.: A multiobjective Markov chain Monte Carlo approach for history matching and uncertainty quantification. J. Petrol. Sci. Eng. 166, 759–777 (2018)

    Google Scholar 

  26. Ji, Z., Kim, Y., Chen, A.: Multi-objective alpha-reliable path finding in stochastic networks with correlated link costs: a simulation-based multi-objective genetic algorithm approach (SMOGA). Expert Syst. Appl. 38, 1515–1528 (2011)

    Google Scholar 

  27. Alabert, F.: Stochastic Imaging of Spatial Distributions Using Hard and Soft Information(Master’s thesis). Stanford University, Stanford (1987)

    Google Scholar 

  28. Deutsch, C.V., Journel, A.G.: GSLIB: Geostatistical Software Library and User’s Guide. Oxford University Press, New York (1998)

    Google Scholar 

  29. Tifkitsis, K..I.., Mesogitis, T..S.., Struzziero, G.., Skordos, A..A..: Stochastic multi-objective optimisation of the cure process of thick laminates. Compos. Part A: Appl. Sci. Manuf. 112, 383–394 (2018). https://doi.org/10.1016/j.compositesa.2018.06.015

    Article  Google Scholar 

  30. Yaping, F., Ding, J., Wang, H., Wang, J.: Two-objective stochastic flow-shop scheduling with deteriorating and learning effect in Industry 4.0-based manufacturing system. Appl. Soft Comput. 68, 847–855 (2018)

    Google Scholar 

  31. Napalkova, L., Merkuryeva, G.: Multi-objective stochastic simulation-based optimisation applied to supply chain planning. Technol. Econ. Dev. Econ. 181, 132–148 (2012)

    Google Scholar 

  32. Gholaminezhad, I., Assimi, H., Jamali, A., Vajari, D.A.: Uncertainty quantification and robust modeling of selective laser melting process using stochastic multi-objective approach. Int. J. Adv. Manufact. Technol. 86, 1425–1441 (2016)

    Google Scholar 

  33. Gonzalez-Neira, E.M., et al.: Robust solutions in multi-objective stochastic permutation flow shop problem. Comput. Ind. Eng. 137, 10602 (2019)

    Google Scholar 

  34. Fu, Y., Zhou, M., Guo, X., Qi, L.: Stochastic multi-objective integrated disassembly-reprocessing-reassembly scheduling via fruit fly optimization algorithm. J. Clean. Prod. 278, 123364 (2021)

    Article  Google Scholar 

  35. Halim, R.A., Seck, M.D.: The simulation-based multi-objective evolutionary optimization (SIMEON) framework. In: Proceedings of the Winter Simulation Conference, Phoenix, pp. 2839–2851 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asmae Gannouni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gannouni, A., Ellaia, R. (2024). An Overview of Simulation-Based Multi-objective Evolutionary Algorithms. In: Ezziyyani, M., Kacprzyk, J., Balas, V.E. (eds) International Conference on Advanced Intelligent Systems for Sustainable Development (AI2SD'2023). AI2SD 2023. Lecture Notes in Networks and Systems, vol 930. Springer, Cham. https://doi.org/10.1007/978-3-031-54318-0_6

Download citation

Publish with us

Policies and ethics