Skip to main content

Flocking Method for Identifying of Neural Circuits in Optogenetic Datasets

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2023)

Abstract

This work introduces a new approach to spatial analysis of brain activity in optogenetics datasets based on application of flocking method for an identification of stable neuronal activity locations. Our method uses a multiple local directivity and interaction in neuronal activity paths. It can be seen as a flocking behaviour that promotes sustainable structuration because they use collective information to move. We processed sets of mouse brain images obtained by light-sheet fluorescence microscopy method. Location variations of neural activity patterns were calculated on the basis of flocking algorithm. An important advantage of using this method is the identification of locations where a pronounced directionality of neuronal activity trajectories can be observed in a sequence of several adjacent slices, as well as the identification of areas of through intersection of activities. The trace activity of neural circuits can affect parameters of subsequent activation of neurons occurring in the same locations. We analyzed neuronal activity based on its distributions from slice to slice obtained with a time delay. We used GDAL Tools and LF Tools in QGIS for geometric and topological analysis of multi-page TIFF files with optogenetics datasets. As a result, we were able to identify localizations of sites with small movements of group neuronal activity passing in the same locations (with retaining localization) from slice to slice over time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Patriarchi, T., et al.: Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360 (2018)

    Google Scholar 

  2. Aranda, R., Rivera, M., Ramirez-Manzanares, A.: A flocking based method for brain tractography. Med. Image Anal. 18, 515–530 (2014)

    Article  Google Scholar 

  3. Klapoetke, N.C., et al.: Independent optical excitation of distinct neural populations. Nat. Methods 11, 338–346 (2014)

    Article  Google Scholar 

  4. Papp, E.A., Leergaard, T.B., Csucs, G., Bjaalie, J.G.: Brain-wide mapping of axonal connections: workflow for automated detection and spatial analysis of labeling in microscopic sections. Front. Neuroinform. 10, 11 (2016)

    Article  Google Scholar 

  5. Zhan, L., et al.: Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease. Front. Aging Neurosci. 7, 48 (2015)

    Article  Google Scholar 

  6. Athey, T., et al.: BrainLine: An Open Pipeline for Connectivity Analysis of Heterogeneous Whole-Brain Fluorescence Volumes (2023). https://doi.org/10.1101/2023.02.28.530429

  7. Côté, M.-A., et al.: Tractometer: towards validation of tractography pipelines. Med. Image Anal. 17, 844–857 (2013)

    Article  Google Scholar 

  8. Maier-Hein, L., et al.: Why rankings of biomedical image analysis competitions should be interpreted with care. Nat. Commun. 9, 5217 (2018)

    Article  Google Scholar 

  9. Benedetti, P., Femminella, M., Reali, G.: Mixed-sized biomedical image segmentation based on U-Net architectures. Appl. Sci. 13, 329 (2022)

    Article  Google Scholar 

  10. Falk, T., et al.: U-Net: deep learning for cell counting, detection, and morphometry. Nat. Methods 16, 67–70 (2019)

    Article  Google Scholar 

  11. Furtado, P.: Testing segmentation popular loss and variations in three multiclass medical imaging problems. J. Imaging 7, 16 (2021)

    Article  Google Scholar 

  12. Wang, Y., Wang, C., Wu, H., Chen, P.: An improved Deeplabv3+ semantic segmentation algorithm with multiple loss constraints. PLoS ONE 17, e0261582 (2022)

    Article  Google Scholar 

  13. Ronneberger, O.: Invited talk: U-Net convolutional networks for biomedical image segmentation. In: Maier-Hein, G., et al. (eds.) Bildverarbeitung für die Medizin 2017, p. 3. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54345-0_3

  14. Lee, J., et al.: A pixel-level coarse-to-fine image segmentation labelling algorithm. Sci. Rep. 12, 8672 (2022)

    Article  Google Scholar 

  15. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G., Deisseroth, K.: Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005)

    Article  Google Scholar 

  16. Deisseroth, K.: Controlling the brain with light. Sci. Am. 303, 48–55 (2010)

    Article  Google Scholar 

  17. Boyden, E.S.: A history of optogenetics: the development of tools for controlling brain circuits with light. F1000 Biol. Rep. 3, 11 (2011)

    Google Scholar 

  18. Jennings, J.H., et al.: Interacting neural ensembles in orbitofrontal cortex for social and feeding behaviour. Nature 565, 645–649 (2019)

    Article  Google Scholar 

  19. Ramirez, S., et al.: Creating a false memory in the hippocampus. Science 341, 387–391 (2013)

    Article  Google Scholar 

  20. Yang, Y., et al.: Wireless multilateral devices for optogenetic studies of individual and social behaviors. Nat. Neurosci. 24, 1035–1045 (2021)

    Article  Google Scholar 

  21. Luis-Islas, J., Luna, M., Floran, B., Gutierrez, R.: Optoception: perception of optogenetic brain perturbations. eNeuro 9 (2022)

    Google Scholar 

  22. Ronzitti, E., et al.: Recent advances in patterned photostimulation for optogenetics. J. Opt. 19, 113001 (2017)

    Article  Google Scholar 

  23. Picot, A., et al.: Temperature rise under two-photon optogenetic brain stimulation. Cell Rep. 24, 1243-1253.e5 (2018)

    Article  Google Scholar 

  24. Chen, I.-W., et al.: In vivo sub-millisecond two-photon optogenetics with temporally focused patterned light. J. Neurosci. 39, 1785–1818 (2019)

    Google Scholar 

  25. Shemesh, O.A., et al.: Temporally precise single-cell-resolution optogenetics. Nat. Neurosci. 20, 1796–1806 (2017)

    Article  Google Scholar 

  26. Huisken, J., Stainier, D.Y.R.: Selective plane illumination microscopy techniques in developmental biology. Development 136, 1963–1975 (2009)

    Article  Google Scholar 

  27. Maddalena, L., Pozzi, P., Ceffa, N.G., van der Hoeven, B., Carroll, E.C.: Optogenetics and light-sheet microscopy. Neuromethods 191, 231–261 (2023)

    Google Scholar 

  28. Müllenbroich, M.C., et al.: High-fidelity imaging in brain-wide structural studies using light-sheet microscopy. eNeuro 5 (2018)

    Google Scholar 

  29. Müllenbroich, M.C., et al.: Bessel beam illumination reduces random and systematic errors in quantitative functional studies using light-sheet microscopy. Front. Cell. Neurosci. 12, 1–12 (2018)

    Article  Google Scholar 

  30. Prakash, R., et al.: Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation. Nat. Methods 9, 1171–1179 (2012)

    Article  Google Scholar 

  31. Ban, Z., Hu, J., Lennox, B., Arvin, F.: Self-organised collision-free flocking mechanism in heterogeneous robot swarms. Mob. Netw. Appl. 26, 2461–2471 (2021)

    Article  Google Scholar 

  32. Vicsek, T., Zafeiris, A.: Collective motion. Phys. Rep. 517, 71–140 (2012)

    Article  Google Scholar 

  33. Papadopoulou, M., et al.: Dynamics of collective motion across time and species. Philos. Trans. R. Soc. B Biol. Sci. 378 (2023)

    Google Scholar 

  34. Battersby, S.: News feature: the cells that flock together. PNAS USA 112, 7883–7885 (2015)

    Article  Google Scholar 

  35. Ascione, F., et al.: Collective rotational motion of freely expanding T84 epithelial cell colonies. J. R. Soc. Interface 20 (2023)

    Google Scholar 

  36. Ren, H., Walker, B.L., Cang, Z., Nie, Q.: Identifying multicellular spatiotemporal organization of cells with SpaceFlow. Nat. Commun. 13, 4076 (2022)

    Article  Google Scholar 

  37. Tang, W.-C., et al.: Optogenetic manipulation of cell migration with high spatiotemporal resolution using lattice lightsheet microscopy. Commun. Biol. 5, 879 (2022)

    Article  Google Scholar 

  38. Marre, O., et al.: Mapping a complete neural population in the retina. J. Neurosci. 32, 14859–14873 (2012)

    Article  Google Scholar 

  39. Goldin, M.A., et al.: Context-dependent selectivity to natural images in the retina. Nat. Commun. 13, 5556 (2022)

    Article  Google Scholar 

  40. Doursat, R.: Bridging the mind-brain gap by morphogenetic ‘neuron flocking’: the dynamic self-organization of neural activity into mental shapes. AAAI Fall Symposium. Technical report, FS-13-02, pp. 16–21 (2013)

    Google Scholar 

  41. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. ACM SIGGRAPH Comput. Graph. 21, 25–34 (1987)

    Article  Google Scholar 

  42. Bonsi, P., et al.: RGS9–2 rescues dopamine D2 receptor levels and signaling in DYT1 dystonia mouse models. EMBO Mol. Med. 11 (2019)

    Google Scholar 

  43. Silvestri, L., et al.: Whole brain images of selected neuronal types (2019). https://doi.org/10.25493/68S1-9R1

  44. Silvestri, L., Di Giovanna, A.P., Mazzamuto, G.: Whole-brain images of different neuronal markers (2020). https://doi.org/10.25493/A0XN-XC1

  45. Chung, K., et al.: Structural and molecular interrogation of intact biological systems. Nature 497, 332–337 (2013)

    Article  Google Scholar 

  46. Costantini, I., et al.: A versatile clearing agent for multi-modal brain imaging. Sci. Rep. 5, 9808 (2015)

    Article  Google Scholar 

  47. Wang, Q., et al.: The allen mouse brain common coordinate framework: a 3D reference atlas. Cell 181, 936-953.e20 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita Zaleshina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zaleshina, M., Zaleshin, A. (2024). Flocking Method for Identifying of Neural Circuits in Optogenetic Datasets. In: Nicosia, G., Ojha, V., La Malfa, E., La Malfa, G., Pardalos, P.M., Umeton, R. (eds) Machine Learning, Optimization, and Data Science. LOD 2023. Lecture Notes in Computer Science, vol 14505. Springer, Cham. https://doi.org/10.1007/978-3-031-53969-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53969-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53968-8

  • Online ISBN: 978-3-031-53969-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics